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First lecture: fixing the notation — discrete and metric graphs The names and all that

Motivation — The names and all that

Graph-like structure: a model for a quantum mechanical system of wires on which
electrons travel
Models:

discrete graphs and their Laplacians (difference operators on the vertices)

metric graphs and their Laplacians, i.e., differential operators on the edges
considered as intervals), a metric graph with such a (self-adjoint) operator is also
called quantum graph

thin branched structure (manifold) (or thick/fat graphs) and their Laplacians: an
ε-neighbourhood Xε of a metric graph X0 embedded in R2 (or some other space) or
a similarly defined space Xε shrinking to X0 as ε→ 0 together with a suitable
Laplacian (e.g. Neumann or Dirichlet boundary condition on ∂Xε)

Olaf Post (University of Trier, Germany) Analysis on graph-like spaces SOMPATY Summer School Samarkand 2 / 56



First lecture: fixing the notation — discrete and metric graphs Why thin branched structures are interesting?

Why thin branched structures are interesting?

Modelling waves in thin branching “graph-like” structures: narrow waveguides,
quantum wires, photonic crystals, blood vessels, lungs. Applications in
nanotechnology, optics, chemistry, medicine

Quantum graphs are systems of ODEs and therefore simpler objects than thin
branched structures with their Laplacians (partial differential operators)

If we can describe such a thin branched structure by a quantum graph, we have a
good (sometimes even analytically “solvable”) model

Quantum graphs themselves are sometimes considered as good models of electron
spectra of molecules or Carbon nanostructures (graphene, nanotubes)

discrete graph models sometimes also work well (tight binding model in Physics)

transport of a wave of a certain frequency/energy is allowed if the frequency lies in
the spectrum of an associated operator
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First lecture: fixing the notation — discrete and metric graphs Discrete graphs

Discrete graphs — fixing the notation

Definition

G = (V ,E , ∂, ·̄) discrete graph (later: functions f : V −→ C on vertices)

consists of set of vertices V ;

set of edges E (both at most countable)

connection map
∂ : E −→ V × V , e 7→ (∂−e, ∂+e) (1.1)

associating to e ∈ E its initial (∂−e) and terminal (∂+e) vertex (orientation)

inversion map ·̄ : E −→ E , e 7→ ē with ¯̄e = e and ∂+ē = ∂e

Ev := { e ∈ E | ∂−e = v } set of adjacent (outgoing) edges at v ∈ V

deg v := |Ev | degree of vertex v

We allow loops (∂−e = ∂+e) or multiple edges (i.e., e1, e2) with ∂−e1 = ∂−e2 and
∂+e1 = ∂+e2
We allow infinite graphs, but we assume that the graph is locally finite, i.e., that
deg v <∞ for all v ∈ V .
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First lecture: fixing the notation — discrete and metric graphs Discrete graphs

Discrete graphs — fixing the notation II

For a simple graph (without loops and multiple edges), we only need G = (V ,E) with
E ⊂ V × V :

e = (v , v ′) ∈ E ⇐⇒ ē := (v ′, v) ∈ E (symmetric)

(v , v) /∈ E for all v ∈ V (no loops)

connection map ∂ : E −→ V × V is given by e = (v , v ′) 7→ (v ′, v) (injective)

inversion map ·̄ : E −→ E , (v ′, v) = (v , v ′)

instead ∑
e∈Ev

(f (v)− f (∂+e)) write
∑
v′∼v

(f (v)− f (v ′))

for f : V −→ C
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First lecture: fixing the notation — discrete and metric graphs Weighted discrete graphs

Weighted discrete graphs

We often need edge and vertex weights (this allows us to consider various types of
discrete Laplacians at the same time)

Definition

We call (G , γ, µ) a weighted discrete graph if

γ : E −→ ]0,∞[, e 7→ γe , γē = γe (edge weight)

µ : V −→ ]0,∞[, v 7→ µ(v) (vertex weight)

(1/γe can be interpreted as a length of the edge e, see below).
For a discrete graph we have two natural weights:

combinatorial weights: γe = 1 and µ(v) = 1 for all e, v

standard weights: γe = 1 and µ(v) = deg v

electric network: µ(v) = 1, γe > 0 conductance
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First lecture: fixing the notation — discrete and metric graphs Weighted discrete graphs

Weighted degree, normalised weights

Definition

For an edge weight γ, we define the weighted degree degγ :=
∑

e∈Ev
γe

A weighted graph is normalised if degγ(v) = µ(v) for all v ∈ V .

Example

The standard weight (γe = 1, µ(v) = deg(v)) is normalised: deg1(v) = deg(v)

We assume that

ϱ(v) :=
degγ(v)

µ(v)
=

1

µ(v)

∑
e∈Ev

γe

is uniformly bounded (supv∈V ϱ(v) <∞, only condition if |V | = ∞)

Example

Standard or more generally normalised weights (ϱ(v) = 1)

combinatorial weight: (γe = 1, µ(v) = 1): ϱ bounded iff deg is uniformly bounded
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First lecture: fixing the notation — discrete and metric graphs Discrete Laplacians

Discrete Laplacians

Weighted Hilbert space:

ℓ2(V , µ) :=
{
φ = (φ(v))v∈V

∣∣ ∥φ∥2ℓ2(V ,µ) :=
∑
v∈V

|φ(v)|2µ(v) <∞
}
.

Definition

The discrete Laplacian ∆ = ∆(G ,γ,µ) associated to a weighted (discrete) graph (G , γ, µ)
is defined as

(∆φ)(v) :=
1

µ(v)

∑
e∈Ev

γe(φ(v)− φ(∂+e))

Exercise

Check that (∆φ)(v) = ϱ(v)φ(v)− 1
µ(v)

∑
e∈Ev

γeφ(ve)

Calculate Laplacian for combinatorial and standard weight

Check that ∆ ≥ 0 in ℓ2(V , µ), i.e., that ⟨∆φ,φ⟩ℓ2(V ,µ) ≥ 0 Hint: Try to express
⟨∆φ,φ⟩ℓ2(V ,µ) as a non-negative sum over e ∈ E .

Check in books, what the term “discrete Laplacian” actually means!
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First lecture: fixing the notation — discrete and metric graphs Metric graphs

Metric graphs

Definition (metric graph)

Given a discrete graph G = (V ,E , ∂, ·̄) and a function ℓ : E −→ ]0,∞[, e 7→ ℓe , (ℓē = ℓe)
edge length), we construct a metric space M as follows:

for each edge e ∈ E there is a “coordinate” map ψe : [0, ℓe ] −→ M such that
Me := ψe([0, ℓe ]) is isometric with [0, ℓe ]

We have ψe(s) = ψē(ℓe − s), hence Mē = Me ;

Me cover M (
⋃

e Me = M)

if e, e′ ∈ Ev then ψe(0) = ψe′(0) (vertices are according to discrete structure)

M defined as above by the data (V ,E , ∂, ℓ) is called a metric graph.

In other words: We glue together copies of intervals [0, ℓe ] ∼= Me according to the
discrete graph

Alternatively, you can think of M as a topological graph, where each edge e ∈ E
(topologically an interval) is associated a length ℓe > 0.

In the sequel, we often identify [0, ℓe ] with Me and don’t mention ψe .
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First lecture: fixing the notation — discrete and metric graphs Metric graphs

Metric graphs II

The graph M can be embedded Rd ; for d = 2, this may not always be possible;

but note: embedding is unimportant for analysis of metric graphs (like Riemannian
manifolds and submanifolds of Rd), a metric graph M is uniquely defined by the
data G = (V ,E , ∂, ·̄) and ℓ
We also have a natural measure on M denoted by ds, given by the sum of the
Lebesgue measures dse on Me (up to the boundary points, a null set).

To avoid technicalities, we assume

ℓ0 := inf
e∈E

ℓe > 0. (1.3)
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First lecture: fixing the notation — discrete and metric graphs Metric graphs

Metric graphs: associated Hilbert space(s)

Associated Hilbert space is L2(M) (with measure ds).

Using the coordinates ψe we set fe := f ◦ ψe

as ψe are isometries and there are two orientations e, ē (and points have measure 0),
we have a natural identification of f ∈ L2(M) with

(fe)e∈E ∈
{
(fe)e ∈

⊕
e∈E

L2(Me)
∣∣∣ fe(s) = fē(ℓe − s) ∀e ∈ E , s ∈ [0, ℓe ]

}
:=

⊕
e∈E

L2(Me)/∼ (|E | = ∞:
⊕
e

closure of algebraic direct sum)

As norm we use (factor 1/2 because edges come in two orientations)

∥f ∥2L2(M) :=
1

2

∑
e∈E

∫
[0,ℓe ]

|fe(s)|2 ds <∞

Olaf Post (University of Trier, Germany) Analysis on graph-like spaces SOMPATY Summer School Samarkand 11 / 56



First lecture: fixing the notation — discrete and metric graphs Excursion: Sobolev spaces on intervals

Excursion: Sobolev spaces on intervals

Let us briefly review some facts:

Let I := [a, b] be a compact interval, a < b.

L2(I ) :=
{
f : I −→ C

∣∣ ∥f ∥2L2(I ) := ∫
I

|f (s)|2 ds <∞
}

(more precisely, f is a class of almost everywhere identical functions).

f has a weak derivative f ′ = h in L2(I ) if

⟨h, g⟩L2(I )︸ ︷︷ ︸
:=

∫
I h(s)g(s) ds

= ⟨f ,−g ′⟩L2(I )

for all smooth g with support supp g := { s ∈ I | g(s) ̸= 0 } inside I̊ = (a, b).
(Take partial integration formula as definition for derivative)

H1(I ) :=
{
f ∈ L2(I )

∣∣ f ′ ∈ L2(I ) weakly
}
,

∥f ∥2H1(I ) := ∥f ∥2L2(I ) + ∥f ′∥2L2(I )
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First lecture: fixing the notation — discrete and metric graphs Excursion: Sobolev spaces on intervals

A simple Sobolev trace estimate

We have an important lemma, assuring that functions in H1(I ) are actually continuous
and f (b) makes sense for f ∈ H1(I ).
Its proof is rather simple so we include it here:

Lemma

1 We have |f (s1)− f (s2)|2 ≤ |s1 − s2|∥f ′∥2L2(I ) for f ∈ H1(I ). In particular, functions in

f are continuous, i.e., H1(I ) ⊂ C(I ) (space of continuous functions on I ).a

2 There exists C(ℓ) > 0 (depending only on ℓ := b − a > 0) such that

|f (b)|2 ≤ C(ℓ)∥f ∥2H1(I ) (1.4)

for all f ∈ H1(I ).

aMore precisely, f ∈ H1(I ) ⊂ L2(I ) is an equivalence class (a set) of functions being equal almost
everywhere. But if there is a continuous representant, it is unique, since two different continuous functions
must differ on on set of positive measures, hence the embedding H1(I ) ⊂ C(I ) is well-defined.
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First lecture: fixing the notation — discrete and metric graphs Excursion: Sobolev spaces on intervals

Proof of Soblev trace lemma

Proof.

(1) We have

f (s2)− f (s1) =

∫ s2

s1

f ′(s) ds, (1.5)

hence by Cauchy-Schwarz

|f (s2)− f (s1)|2 =
∣∣∣∫ s2

s1

1 · f ′(s) ds
∣∣∣2 ≤ ∫ s2

s1

12 ds ·
∫ s2

s1

|f ′(s)|2 ds

≤ |s1 − s2|∥f ′∥2L2(I ).

(2) Assume first that f (a) = 0, then by (1), we have

|f (b)|2 ≤ ℓ

∫ b

a

|f ′(s)|2 ds = ℓ∥f ′∥2L2(I ).
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First lecture: fixing the notation — discrete and metric graphs Excursion: Sobolev spaces on intervals

Proof of Soblev trace lemma II

Proof continued.

Now replace f by f̃ (s) = χ(s)f (s), where χ(a) = 0 and χ(b) = 1 (e.g. χ(s) = (s − a)/ℓ).
Then

f̃ ′ = χf ′ + χ′f , |f̃ ′|2 ≤ 2|f ′|2 + (2/ℓ2)|f |2

and hence

|f (b)|2 = |f̃ (b)|2 ≤ ℓ∥f̃ ′∥2L2(I ) ≤ 2max{ℓ, ℓ−1}
(
∥f ′∥2L2(I ) + ∥f ∥2L2(I )

)
.

The optimal constant is C(ℓ) = coth(ℓ/2) = O(ℓ−1) as ℓ→ 0.

Higher order spaces are defined recursively as

Hk(I ) :=
{
f ∈ Hk−1(I )

∣∣ f ′ exists weakly in L2(I )
}
,

∥f ∥2Hk (I ) :=
k∑

j=0

∥f (j)∥2L2(I ).

for k ≥ 1. We set H0(I ) := L2(I ). Moreover, it follows from Sobolev trace lemma
that f (j)(s) is defined for f ∈ Hk(I ) for all 0 ≤ j ≤ k − 1 and s ∈ I .
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Second lecture: Laplacians on metric graphs Standard Laplacian on a metric graph

Sobolev spaces on metric graphs

Let M be a metric graph given by (V ,E , ∂, ·̄, ℓ).

Definition

We call
Hk

dec(M) :=
⊕
e∈E

Hk(Me)/∼

the decoupled Sobolev space of order k on M, ∥f ∥2
Hk
dec

(M)
:= 1

2

∑
e ∥fe∥

2
Hk (Me )

By the Sobolev trace lemma, H1(Me) ⊂ C(Me), hence it makes sense to define

H1(M) := H1
dec(M) ∩ C(M), (2.1)

i.e., a function f ∈ H1
dec(M) lies in H1(M) iff

fe1(v) = fe2(v) for all e1, e2 ∈ Ev and all v ∈ V . (2.2)

Here, we use the convention

fe(v) :=

{
fe(0), v = ∂−e

fe(ℓe), v = ∂+e,
(2.3)

the unoriented evaluation of f at v . Denote common value by f (v).
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Second lecture: Laplacians on metric graphs Standard Laplacian on a metric graph

Evaluation of functions at vertices

Lemma (later used to define standard Laplacian on metric graph)

Assume that ℓ0 := infe∈E ℓe > 0, then the evaluation map

Γ: H1(M) −→ ℓ2(V , deg), f 7→ (f (v))v∈V

is bounded. Moreover, H1(M) is closed in H1
dec(M), hence itself a Hilbert space.

Proof.

By the Sobolev trace lemma, we have |fe(0)|2 ≤ C(ℓe)∥fe∥2H1(Me )
(C(ℓe) ∼ 1/ℓe), hence

∥Γf ∥2ℓ2(V ,deg) =
∑
v∈V

|f (v)|2 deg v =
∑
v∈V

∑
e∈Ev

|f (v)|2 =
∑
e∈E

|fe(0)|2

≤ sup
e

C(ℓe)
∑
e∈E

∥fe∥2H1(Me )
= 2 sup

e
C(ℓe)∥f ∥2H1

dec
(M).

Since ℓe ≥ ℓ0 > 0, we have supe C(ℓe) <∞.
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Second lecture: Laplacians on metric graphs Standard Laplacian on a metric graph

Evaluation of functions at vertices II

Proof continued.

For f ∈ H1
dec(M) Consider

Γdec : H
1
dec(M) −→ G dec :=

⊕
v∈V

CEv , Γdecf := (f (v))v∈V , f (v) := (fe(0))e∈Ev .

By the same argument as above, it can be seen that Γdec is bounded.

Now, embed ℓ2(V , deg) into G dec by setting φ 7→ (φ(v)(1, . . . , 1))v∈V , where
(1, . . . , 1) ∈ CEv is the vector with all its deg v entries being 1;

note that image of ℓ2(V , deg) is a closed subspace of G dec.

We can consider now H1(M) as the preimage of a closed set (the image of
ℓ2(V , deg) in G dec) under a continuous mapping (Γdec), hence H1(M) is closed, and
hence itself a Hilbert space.
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Second lecture: Laplacians on metric graphs Standard Laplacian on a metric graph

Evaluation of derivatives at vertices

If f ∈ H2
dec(M), we set

f ′e (v) :=

{
−f ′e (0), v = ∂−e

f ′e (ℓe), v = ∂+e,
(2.4)

the oriented evaluation of f ′e at v .

Remark

The choice of sign is guided by the formula
∫ ℓe
0

g ′′(s) ds = [g ′(s)]ℓe0 = g ′(ℓe)− g ′(0).

Think of the derivative as a vector field being evaluated with respect to the
orientation, while f is a scalar function evaluated without orientation.

The value f ′e (v) is the derivative towards the vertex v .

Be aware of the fact that others may use the opposite convention!
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

Excursion: Sesquilinear and quadratic forms and associated operators

Definition

H Hilbert space,

D ⊂ H a linear subspace

d : D × D −→ C sesquilinear form (linear in the first, antilinear in the second
argument: d(f , λg) = λd(f , g))

d positive (d(f , f ) ≥ 0 for all f ∈ D)

set dom d := D (domain of the (quadratic) form d)

We always assume that D is dense in H .

Given a sesquilinear form, its associated quadratic form is given by

d(f ) := d(f , f ) (≥ 0 in our case).

Note that given a quadratic form, its associated sesquilinear form can be recovered by

d(f , g) :=
1

4

3∑
k=0

ikd(f + ikg).
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

Excursion: Sesquilinear and quadratic forms and associated operators II

The domain of d carries a natural norm given by

∥f ∥2d := ∥f ∥2H + d(f ). (2.6)

Definition

We say that d is a closed (quadratic) form if (dom d, ∥·∥d) is complete, i.e., itself a
Hilbert space.

Theorem (see e.g. [Kat66, Thm. VI.2.1])

Let d be a closed, positive quadratic form with domain dom d being dense in a Hilbert
space H . Then there is a unique self-adjoint and positive operator ∆ ≥ 0 in H such
that

dom∆ =
{
f ∈ dom d

∣∣ ∃h ∈ H ∀g ∈ dom d : d(f , g) = ⟨h, g⟩H
}
.

Moreover, ∆f = h is uniquely determined.

Typically, d(f , g) = ⟨h, g⟩ means to perform some sort of partial integration
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

Standard Laplacian on a metric graph

Set now

d(f ) := ∥f ′∥2L2(M) =
1

2

∑
e∈E

∥f ′e ∥2L2(Me ), dom d := H1(M). (2.7)

Theorem

The quadratic form d is positive and closed. The associated operator, denoted by ∆M is
given by

dom∆M =
{
f ∈ H2

dec(M)
∣∣ f continuous, ∀v ∈ V :

∑
e∈Ev

f ′e (v) = 0
}
. (2.8)

Proof.

That d is a closed quadratic form is nothing but the fact that H1(M) with norm given by
∥f ∥2H1(M) = d(f ) + ∥f ∥2L2(M) is complete, i.e., a Hilbert space (see Lemma 10).
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

Standard Laplacian on a metric graph II

Proof continued.

For the associated operator, we calculate (provided fe is regular enough to do partial
integration: fe ∈ H2(Me))

d(f , g) =
1

2

∑
e∈E

∫ ℓe

0

f ′e g
′
e ds =

1

2

∑
e∈E

(∫ ℓe

0

(−f ′′e )g e ds +
[
f ′e g e

]ℓe
0

)
,

functions g vanishing near boundary (dense in L2(M)!), ⇝ (∆f )e = − 1
2
f ′′e (or

∆f = −f ′′ on M)
For the boundary term, we have

1

2

∑
e∈E

[
f ′e g e

]ℓe
0

=
∑
v∈V

f ′e (v)g(v)

(Recall our sign definition for f ′e (v) in (2.4)! Recall also that ge(v) = g(v) is
independent of e ∈ Ev .) Reordering of the sum gives∑

e∈E

f ′e (v)g(v) =
∑
v∈V

(∑
e∈Ev

f ′e (v)
)
g(v).

Since g(v) can be arbitary for g ∈ H1(M) we must have
∑

e∈Ev
f ′e (v) = 0.
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

More Laplacians on a metric graph

Due to
∑

e∈Ev
f ′e (v) = 0 the Laplacian is also called Kirchhoff Laplacian.

We have many other possibilities to define self-adjoint operators acting as −f ′′ on
each edge: Assume that

dq(f ) := ∥f ′∥2L2(M) +
∑
v∈V

q(v)|f (v)|2, dom dq = H1(M)

for a bounded function q : V −→ R. As before, it is not difficult to see that the
associated operator ∆(M,q) acts as ∆(M,q)f = −f ′′ on the domain

dom∆(M,q) =
{
f ∈ H2

dec(M)
∣∣ f continuous, ∀v ∈ V :

∑
e∈Ev

f ′e (v) + q(v)f (v) = 0
}
.

(2.9)
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

More Laplacians on a metric graph II

General vertex conditions:

choose linear subspace Gv ⊂ CEv , G :=
⊕

v Gv

(so-called vertex space, allowed values of f (v) = (fe(v)e∈Ev ),

set

H1
G (M) := { f ∈ H1

dec(M) | ∀v ∈ V : f (v) ∈ Gv }

d(G ,Q)(f ) := ∥f ′∥2L2(M) +
∑
v∈V

⟨Q(v)f (v), f (v)⟩Gv , dom d(G ,Q) = H1
G (M)

for linear Q(v) : Gv −→ Gv , supv ∥Q(v)∥ <∞. The associated operator ∆(M,G ,Q)

acts as ∆(M,G ,Q)f = −f ′′ on the domain

dom∆(M,G ,Q) =
{
f ∈ H2

dec(M)
∣∣∀v ∈ V : f (v) ∈ Gv , Pv f

′(v) + Q(v)f (v) = 0
}
.

(Pv is the projection onto Gv ⊂ CEv ).
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

Other (trivial) Laplacians on a metric graph

Other trivial possibilities (extreme cases):

decoupled Dirichlet Laplacian: fix Gv = {0}, i.e., f (v) = 0 for all v , form is

dom dD,dec(f ) = { f ∈ H1(M) | f (v) = 0 ∀v ∈ V }, dD,dec(f ) = ∥f ′∥2,

the associated operator is ∆D,dec
M :=

⊕
e∈E ∆D

Me
/∼

decoupled Neumann Laplacian: fix Gv = CEv then the quadratic form

dom dN,dec(f ) = H1
dec(M), dN,dec(f ) = ∥f ′∥2,

the associated operator is ∆N,dec
M :=

⊕
e∈E ∆N

Me
/∼

Why are these operators called “decoupled”?

the Laplacian (and its functions such as the heat or wave operator) are direct sum of
the indivisual ones on each interval with Dirichlet resp. Neumann conditions

In particular, no wave can travel through a vertex, and therefore cannot see any
structure of the graph ⇝ boring for applications!

Nevertheless, both are useful as extreme case in proofs etc.
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Second lecture: Laplacians on metric graphs Excursion: Sesquilinear quadratic forms and associated operators

Excursion: Order on quadratic forms

Let d1, d2 be two positive closed quadratic forms in a Hilbert space H .

Definition

We say that d1 ≤ d2 iff (see e.g. [Dav95, Sec. 4.4])

E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995.

dom d1 ⊃ dom d2, d1(f ) ≤ d2(f ) ∀f ∈ dom d2.

It follows that the resolvents of the associated operators ∆1 and ∆2 fulfil
(∆2 + 1)−1 ≤ (∆1 + 1)−1, and that by the min-max principle, we have λk(∆1) ≤ λk(∆2)
for the k-th eigenvalue (ordered with respect to multiplicity).

Exercise

Set d̃i (f ) := di (f ) if f ∈ dom di and d̃i (f ) = ∞ otherwise. Interprete now the (pointwise)
inequality d̃1 ≤ d̃2. (For details, see [Dav95, Sec. 4.4])
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Third lecture: Spectra of compact metric graphs Spectra of compact metric graphs

Spectra of compact metric graphs

On a compact metric graph M (i.e., the underlying discrete graph is finite), we have the
following (same is true for ∆M,G ,Q):

Proposition

If M is a compact metric graph, then the standard (Kirchhoff) Laplacian ∆M has purely
discrete spectrum.

Proof.

We have
{ f ∈ H1(M) | f (v) = 0 ∀v ∈ V } ⊂ H1(M) ⊂ H1

dec(M),

and since dD,dec, d (the form on H1(M)), dN,dec all have the same action ∥f ′∥2, we have
the opposite inequality for the quadratic forms

dD,dec ≥ d ≥ dN,dec.
By the above excursion on order of quadratic forms, it follows

(0 ≤) (∆D,dec
M + 1)−1 ≤ (∆M + 1)−1 ≤ (∆N,dec

M + 1)−1 =
⊕
e∈E

(∆N
Me

+ 1)−1/∼

Since the underlying graph is finite and Me compact, the RHS is a compact operator,
hence also the LHS.
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Third lecture: Spectra of compact metric graphs Spectra of compact metric graphs

Spectra of compact metric graphs II

We also can conclude the eigenvalue estimates

λk(∆
D,dec
M ) ≥ λk(∆M) ≥ λk(∆

N,dec
M )

from the last proof, leading e.g. to a simple proof for the Weyl estimate for metric
graph Laplacians.

A similar result holds for more general vertex conditions (the Dirichlet and Neumann
decoupled operators are extremal elements in a certain subclass of vertex couplings).
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Third lecture: Spectra of compact metric graphs Calculation of the spectra

Calculation of the spectra

Let us now calculate the spectrum of the standard Laplacian ∆M of a compact metric
graph M. Since the spectrum of ∆M is discrete we are looking for λ ≥ 0 such that there
is a non-trivial solution of ∆M f = λf , i.e.,

−f ′′e = λfe ∀e ∈ E , f cont., and
∑
e∈Ev

f ′e (v) = 0 ∀v ∈ V .

The first equation leads us to the two fundamental solutions

Φ+
e (t) :=

sin(
√
λt)

sin(
√
λℓe)

and Φ−
e (t) :=

sin
(√
λ(ℓe − t)

)
sin(

√
λℓe)

solving

−f ′′e = λfe on [0, ℓe ],

{
Φ+

e (0) = 0,Φ+
e (ℓe) = 1,

Φ−
e (0) = 1,Φ−

e (ℓe) = 0

We have to exclude those values λ for which sin(
√
λℓe) = 0, i.e.,

√
λℓe /∈ πN (the

spectrum of the decoupled Dirichlet operator ∆D,dec
M ), which is given by

ΣD = ΣD
ℓ := σ(∆D,dec

M ) =
{ k2π2

ℓ2e

∣∣∣ k = 1, 2, . . . , e ∈ E
}
. (3.2)
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Third lecture: Spectra of compact metric graphs Calculation of the spectra

Calculation of the spectra II

Let us now make the ansatz

fe(t) = φ(∂−e)Φ
−
e (t) + φ(∂+e)Φ

−
e (t),

where φ : V −→ C are coefficients. Note that since φ(v) does not depend on the edge
e ∈ Ev , the continuity condition for f = (fe)e∈E is automatically fulfilled.
Let us now check the condition on the derivatives: It is an easy exercise (recall the sign
convention for f ′e (v) in (2.4)) that

f ′e (v) = φ(v)
√
λ cot(

√
λℓe)− φ(∂+e)

√
λ

sin(
√
λℓe)

.

Therefore, we have the following:

Proposition

Let M be a compact metric graph. Assume that λ > 0 and λ is not in the Dirichlet
spectrum ΣD = σ(∆D,dec

M ). Then λ ∈ σ(∆M) (the spectrum of the standard Laplacian on
M) iff there exists a non-trivial function φ : V −→ C such that∑

e∈E

1

sin(
√
λℓe)

(
cos(

√
λℓe)φ(v)− φ(∂+e)

)
= 0. (3.4)

Can be quite complicated if there is no simple relation between ℓe , e ∈ E
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Third lecture: Spectra of compact metric graphs Equilateral metric graphs

Equilateral metric graphs

A particular simple case if given when ℓe are all the same, say, ℓe = 1.

Proposition

Let M be a compact metric graph with ℓe = 1 for all e ∈ E (equilateral metric graph).

If λ /∈ ΣD = { k2π2 | k = 1, 2, . . . } then

λ ∈ σ(∆M) iff µ(λ) := 1− cos(
√
λ) ∈ σ(∆(G ,deg)),

(∆(G ,deg) standard (normalised) discrete Laplacian (weights m(v) = deg v , me = 1)

Moreover, the multiplicity of an eigenvalue is preserved.

Proof.

Recall that the discrete Laplacian is given by

(∆(G ,deg)φ)(v) =
1

deg v

∑
e∈Ev

(
φ(v)− φ(∂+e)

)
= φ(v)− 1

deg v

∑
e∈Ev

φ(∂+e).
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Third lecture: Spectra of compact metric graphs Equilateral metric graphs

Equilateral metric graphs

Proof continued.

If all lengths are the same, we can multiply (3.4) by sin
√
λ/(deg v)( ̸= 0) and end up

with the equation

cos(
√
λ)φ(v)− 1

deg v

∑
e∈Ev

φ(∂+e) = 0,

which is equivalent with

(∆(G ,deg)φ)(v) = (1− cos(
√
λ))φ(v),

and the result follows.

Remark

A discussion on the Dirichlet spectrum (the “exceptional” values
√
λ ∈ πN) can be found

in [LP08, Sec. 4–5] (see also the references therein). These eigenvalues are determined
by the topology of the graph.

F. Lledó and O. Post, Eigenvalue bracketing for discrete and metric graphs, J. Math. Anal. Appl. 348 (2008), 806–833.
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Fourth lecture: Graph-like spaces: thin branched manifolds Thin branched manifolds

Thin branched manifolds

Let M be a metric graph.

Assume for simplicity that M is embedded in Rd .

Let Xε be the ε/2-neighbourhood of M in Rd (possibly smoothened) near the
vertices.

There are other possibilites of defining spaces (manifolds) Xε shrinking to X0 = M
as ε→ 0.

We will show that the Neumann Laplacian on Xε converges to ∆X0 .

∼ ε

∼ ε

e v

X0

Xε,e Xε,v

Xε

Xε,e

Xε,v
Yε,e

Yε,e
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Fourth lecture: Graph-like spaces: thin branched manifolds Thin branched manifolds

Thin branched manifolds II

∼ ε

∼ ε

Me
v

M = X0

Xε,e Xε,v

Xε

Xε,e

Xε,v
Yε,e

Yε,e

We have a decomposition

Xε =
⋃
e∈E

Xε,e ∪
⋃
v∈V

Xε,v , (4.1)

where Xε,e and Xε,v are compact spaces with boundary, (Xε,e)e∈E and (Xε,v )v∈V are
disjoint (up to measure 0 and Xε,e = Xε,ē)
The edge neighbourhood Xε,e is isometric to a cylinder

Xε,e
∼= Me × Yε,e ,

where Yε,e is the transversal space (e.g. Yε,e
∼= Bε/2(0)), Yε,e = εYe

The vertex neighbourhood Xε,v is ε-homothetic to Xv , i.e.,

Xε,v
∼= εXv ,
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Fourth lecture: Graph-like spaces: thin branched manifolds Thin branched manifolds

Thin branched manifolds III

Definition

The manifold Xε with the above properties is called a thin branched manifold associated
with the metric graph X0.

Remark

The manifold Xε may have boundary or not. If Xε has boundary, then also the
transversal manifold Ye has boundary.

If we consider a graph M embedded in, say, R2 and if X̃ε denotes its
ε-neighbourhood, then we can define a similar decomposition as in (4.1), but the

building blocks X̃ε,e and X̃ε,v are only approximatively isometric with Me × εYe and
εXv for some fixed Riemannian manifolds (Ye , he) and (Xv , gv ). This may have two
reasons:

We need a little space for the vertex neighbourhoods (of order ε), so that we need to
replace the interval Me by a slightly smaller one of length ℓe − O(ε).
The edges may be embedded as non-straight curves in R2. This leads to a slight
deviation from the product metric.

All these cases can be treated as a perturbation of the abstract situation above, see
e.g. [Pos12, Sec. 5.4 and Sec. 6.7]).

O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, vol. 2039, Springer, Heidelberg, 2012.

Olaf Post (University of Trier, Germany) Analysis on graph-like spaces SOMPATY Summer School Samarkand 36 / 56



Fourth lecture: Graph-like spaces: thin branched manifolds Laplacians on thin branched manifolds

Laplacians on thin branched manifolds

Hilbert space is L2(Xε). In particular, we have (m = d − 1)

∥u∥2L2(X )ε =

∫
Xε

|u(x)|2 dx

= εm
1

2

∑
e∈E

∫ ℓe

0

∫
Ye

|ue(s, y)|2 dy ds + εm+1
∑
v∈V

∫
Xv

|uv (x)|2 dx

using the decomposition (4.1) and suitable identifications.
As operator on Xε, we consider the Laplacian with Neumann boundary conditions (if
∂Xε ̸= ∅). This operator can again be defined via a quadratic form, namely by

dXε(u) := ∥∇u∥2L2(Xε).

Using again the decomposition (4.1), we have

∥∇u∥2L2(Xε) =

∫
Xε

|∇u|2gε dx = εm
1

2

∑
e∈E

∫ ℓe

0

∫
Ye

(
|u′

e(s, y)|2+
1

ε2
|∇yue(s, y)|2

)
dy ds

+ εm−1
∑
v∈V

∫
Xv

|∇uv |2 dx

denoting u′
e the derivative with respect to the longitudinal variable se ∈ Me , and by

∇y the derivative with respect to y ∈ Ye .
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Fourth lecture: Graph-like spaces: thin branched manifolds Laplacians on thin branched manifolds

Laplacians on thin branched manifolds

Let ũv (x) = uv (x/ε) then (we later use no extra notation like ũ)

(“derivative is 1/length”, change of variable)

|∇ũv |2 =
1

ε2
|∇uv |2

Moreover, we have the scaling behaviour

∥ũv∥2L2(Xε,v ) = εm+1∥uv∥2L2(Xv ) and ∥∇uv∥2L2(Xε,v ) = εm−1∥∇uv∥2L2(Xv )

As domain for dXε we can use the completion of smooth functions on X with
compact support (not necessarily away from the boundary) with respect to the norm

∥u∥2H1(Xε)
:= ∥u∥2L2(Xε) + ∥∇u∥2L2(Xε).

It can be seen (using the first Gauss-Green formula) that the associated operator,
denoted by ∆Xε is the usual Laplacian with Neumann boundary conditions ∂nu = 0
on ∂Xε.
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Fourth lecture: Graph-like spaces: thin branched manifolds Convergence of operators acting in different Hilbert spaces

Excursion: Convergence of operators acting in different Hilbert spaces

How do define a convergence “∆Xε → ∆M”?

The operators act in different Hilbert spaces L2(Xε) and L2(X0)

No natural inclusion, In the lmit X0 = M, there is a dimension reduction. We have
Xε → X0 (in the Gromov-Hausdorff sense)

The operators are unbounded, so use their resolvents Rε := (∆ε + 1)−1 (ε ≥ 0)
(recall: Here, ∆ε = ∆Xε ≥ 0)

General concept: ∆ε ≥ 0 self-adjoint operator in a Hilbert space Hε (ε ≥ 0).
Set Rε := (∆ε + 1)−1 for the resovent. Identify spaces Hε and H0 via identification
operators J = Jε : H0 −→ Hε (∥Jε∥ ≤ 1, we suppress its ε-dependence):

Definition

We say that J = Jε is δε-quasi unitary if

∥(idH0 −J∗J)R0∥H0→H0 ≤ δε and ∥(idHε −JJ∗)Rε∥Hε→Hε ≤ δε. (4.3)

We say that ∆0 and ∆ε are δε-quasi unitarily equivalent if there is a δε-quasi unitary
operator J such that

∥JR0 − RεJ∥H0→Hε ≤ δε. (4.4)
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Fourth lecture: Graph-like spaces: thin branched manifolds Convergence of operators acting in different Hilbert spaces

Excursion: Convergence of operators acting in different Hilbert spaces II

Definition (repetition)

We say that ∆0 and ∆ε are δε-quasi unitarily equivalent if there is a δε-quasi unitary
operator J such that

∥(idH0 −J∗J)R0∥ ≤ δε, ∥(idHε −JJ∗)Rε∥ ≤ δε and ∥JR0 − RεJ∥ ≤ δε.

Remark

Note that δε-quasi unitarity is a quantitative generalisation of unitarity: if δε = 0, J
is actually unitary.

Moreover, δε-quasi unitary equivalence is a quantitative generalisation of unitary
equivalence: if δε = 0, then ∆ε and ∆0 are actually unitarily equivalent.

Exercise

Show that ∥(idH0 −J∗J)R0∥ ≤ δε iff ∥f − J∗Jf ∥ ≤ δε∥(H0 + 1)f ∥ for all
f ∈ domH0

There is a stronger version: Show that ∥R0(idH0 −J∗J)R0∥ ≤ δε iff

∥f ∥2 − ∥Jf ∥2 ≤ δε∥(H0 + 1)f ∥2 ∀f ∈ domH0
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Excursion: Convergence of operators acting in different Hilbert spaces III

Definition

We say that ∆ε converges to ∆0 in the generalised norm resolvent sense (∆ε
gnrc→ ∆0) if

∆0 and ∆ε are δε-quasi unitarily equivalent for δε → 0 as ε→ 0 (convergence speed).

Theorem Assume ∆ε
gnrc→ ∆0, then (for a proof see [Pos12, Ch. 4]):

Convergence of operator functions: We have

∥φ(∆ε)J − Jφ(∆0)∥H0→Hε ≤ Cφδε and ∥φ(∆ε)− Jφ(∆0)J
∗∥Hε→Hε ≤ C ′

φδε

for suitable φ and some universal constants Cφ,C
′
φ > 0 depending only on φ. In

particular, φ(λ) = e−tλ, t > 0 and φ = 1I with ∂I ∩ σ(∆0) = ∅).
Convergence of discrete spectrum: Let λ0 be a simple eigenvaluewith eigenfunction
φ0, then, for each ε > 0 (small enough), there exists a simple discrete eigenvalue λε

with eigenfunction φε of ∆ε such that λε → λ0 and ∥φε − Jφ0∥Hε → 0.

Convergence of essential spectrum: σess(∆ε) → σess(∆0) converges uniformly in
[0,Λ] for all Λ > 0. In particular, ∆ε has a spectral gap in the essential spectrum if
∆0 has (provided ε > 0 is small enough).

O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, vol. 2039, Springer, Heidelberg, 2012.
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Convergence of Laplacian on thin branched manifolds

We come back to thin branched manifolds and define a suitable identification operator

J : L2(X0) −→ L2(Xε).

Assume (for simplicity) that volm Ye = 1 (unscaled transversal volume)

As identification operator we choose

(Jf )e = fe ⊗ 1ε,e and (Jf )v = 0

where

(Jf )e is the contribution on the edge neighbourhoood Xε,e and

(Jf )v is the contribution on the vertex neighbourhood, according to the
decomposition (4.1). Moreover, 1ε,e is the constant function on Yε,e with value
ε−m/2 (the first normalised eigenfunction of Yε,e).

Remark

The setting (Jf )v = 0 seems at first sight a bit rough, but (Jf )v = ε−m/2f (v) is
meaningless: In L2(X0), the value of f at v is not defined.

There is a finer version of identification operators on the level of the quadratic form
domains, again see [Pos12, Ch. 4] for details.
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Resolvent difference

Let us now calculate the resolvent difference RεJ − JR0: For g ∈ L2(X0) and w ∈ L2(Xε),
we have

⟨(RεJ − JR0)g ,w⟩L2(Xε) = ⟨Jg ,Rεw⟩L2(Xε) − ⟨JR0g ,w⟩L2(Xε)

= ⟨J∆0f , u⟩L2(Xε) − ⟨Jf ,∆εu⟩L2(Xε),

where u = Rεw ∈ dom∆ε and f = R0g ∈ dom∆0. Moreover, by the definition of Jf ,

=
1

2

∑
e∈E

(
⟨(−f ′′e ⊗ 1ε,e , ue⟩L2(Xε,e ) − ⟨fe ⊗ 1ε,e ,−u′′

e + (id⊗∆Yε,e )ue⟩L2(Xε,e )

)
=

1

2

∑
e∈E

(
⟨(−f ′′e ⊗ 1ε,e , ue⟩L2(Xε,e ) − ⟨fe ⊗ 1ε,e ,−u′′

e ⟩L2(Xε,e )

)
since we can bring (id⊗∆Yε,e ) on the other side of the inner product (the operator is
self-adjoint!) and ∆Yε,e1ε,e = 0. Using dXε,e = εm dYe ds and performing a partial
integration (Green’s first formula), we obtain (u′

e denotes the derivative with respect to
the longitudinal variable s ∈ Me)

=
1

2

∑
e∈E

εm/2
[∫

Ye

(−f ′e ue + feu
′
e) dYe

]
∂Me
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Fifth lecture: Convergence Laplacians on thin branched manifolds Convergence of Laplacian on thin branched manifolds

Resolvent difference II

using our sign convention (2.3) and (2.4), and after reordering,

=
1

2

∑
e∈E

εm/2
[∫

Ye

(−f ′e ue + feu
′
e) dYe

]
∂Me

=
∑
v∈V

∑
e∈Ev

εm/2

∫
Ye

(
− f ′e (v)ue(v)︸ ︷︷ ︸

=:I1

+ fe(v)u
′
e(v)︸ ︷︷ ︸

=:I2

)
dYe .

Consider now

−
∫

v
uv :=

1

volXv

∫
Xv

uv dXv and −
∫

e
ue(v) :=

1

volYe

∫
Ye

ue(v) dYe ,

then we express the first summand I1 as∑
e∈Ev

εm/2

∫
Ye

f ′e (v)ue(v) =
∑
e∈Ev

εm/2f ′e (v)
(
−
∫

e
ue(v)− −

∫
v
uv

)
+

(∑
e∈Ev

εm/2f ′e (v)
)
−
∫

v
uv

=
∑
e∈Ev

εm/2f ′e (v)
(
−
∫

e
ue(v)− −

∫
v
uv

)
.

The last sum in the first line vanishes since f ∈ dom∆0 fulfils the Kirchhoff condition∑
e∈Ev

f ′e (v) = 0.
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Resolvent difference III

For the second summand I2, we use the fact that fe(v) = f (v) is independent of e ∈ Ev

and obtain∑
e∈Ev

εm/2

∫
Ye

fe(v)u
′
e(v)

)
dYe = εm/2f (v)

∫
∂Xv

∂nuv d∂Xv = εm/2f (v)

∫
Xv

∆Xv uv dXv ,

performing again a partial integration (Green’s first formula, writing uv as 1 · uv ).
Summing up the contributions, we have

⟨(RεJ − JR0)g ,w⟩L2(Xε) =
∑
v∈V

εm/2(− ∑
e∈Ev

f ′e (v)
(
−
∫

e
ue(v)− −

∫
v
uv

)
+ f (v)

∫
Xv

∆Xv uv dXv

)
=: −⟨B0g ,Aεw⟩Gmax + ⟨A0g ,Bεw⟩G ,

where G := ℓ2(V , deg), G max :=
⊕

v∈V CEv and

B0 : L2(X0) −→ G max, (B0g)v =
(
(R0g)

′
e(v)

)
e∈Ev

,

Aε : L2(Xε) −→ G max, (Aεw)v = εm/2(−∫
e
(Rεw)e(v)− −

∫
v
(Rεw)v

)
e∈Ev

Bε : L2(Xε) −→ G , (Bεw)(v) =
εm/2

deg v

∫
Xv

∆Xv (Rεw) dXv

A0 : L2(X0) −→ G , (A0g)(v) = (R0g)(v).
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Resolvent difference IV

In particular, we have shown

Theorem

We can express the resolvent differences of ∆ε and ∆0, sandwiched with the
identification operator J, as

RεJ − JR0 = −A∗
εB0 + B∗

εA0 : L2(X0) −→ L2(Xε)

where G := ℓ2(V , deg), G max :=
⊕

v∈V CEv and

B0 : L2(X0) −→ G max, (B0g)v =
(
(R0g)

′
e(v)

)
e∈Ev

,

Aε : L2(Xε) −→ G max, (Aεw)v = εm/2(−∫
e
(Rεw)e(v)− −

∫
v
(Rεw)v

)
e∈Ev

Bε : L2(Xε) −→ G , (Bεw)(v) =
εm/2

deg v

∫
Xv

∆Xv (Rεw) dXv

A0 : L2(X0) −→ G , (A0g)(v) = (R0g)(v).
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Two main estimates: Sobolev trace and min-max

Let us now state two important estimates: Sobolev trace estimate We have

∥u(0, ·)∥2L2(Ye ) ≤ C(ℓ)∥u∥2H1(Xv,e )
(5.2)

for all u ∈ H1(Xv,e), where Xv,e = [0, ℓ]× Ye is a collar neighbourhood of the boundary
component of Xv touching the edge neighbourhood Xe . The constant C(ℓ) is the same
as in the Sobolev trace estimate.
The proof of (5.2) ist just a vector-valued version of (1.4)!
A min-max estimate We have

∥u − −
∫
u∥2L2(Xv ) ≤

1

λ2(Xv )
∥du∥2L2(Xv ) (5.3)

for all u ∈ H1(Xv ), where λ2(Xv ) is the first (non-vanishing) Neumann eigenvalue of Xv .
Note that u − −

∫
u is the projection onto the space orthogonal to the first (constant)

eigenfunction on Xv .
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Estimate on the resolvent difference

Proposition We have (average on boundary −
∫

e
versus full set −

∫
v
)

εm
∑
e∈Ev

∣∣−∫
e
ue(v)− −

∫
v
u
∣∣2 ≤ εC(ℓ0)

( 1

λ2(Xv )
+ 1

)
∥du∥2L2(Xε,v ) for all u ∈ H1(Xε,v ).

Proof.

We have (denoting by ℓ0 > 0 a lower bound on the edge lengths)

εm
∑
e∈Ev

∣∣−∫
e
ue(v)− −

∫
v
u
∣∣2 = εm

∑
e∈Ev

∣∣−∫
e
(u − −

∫
v
u)
∣∣2 (−

∫
e
1 = 1)

(Cauchy-Schwarz) ≤ εm
∑
e∈Ev

∫
Ye

∣∣u − −
∫

v
u
∣∣2 dYe

(Sobolev trace) ≤ εmC(ℓ0)
∑
e∈Ev

(
∥u − −

∫
v
u∥2L2(Xv,e ) + ∥∇u∥2L2(Xv,e )

)
(∇−

∫
v
u = 0)

≤ εmC(ℓ0)
(
∥u − −

∫
v
u∥2L2(Xv ) + ∥∇u∥2L2(Xv )

)
(
⋃
e∈Ev

Xv,e ⊂ Xv )

(min-max) ≤ εC(ℓ0)
( 1

λ2(Xv )
+ 1

)
∥∇u∥2L2(Xε,v ) (εm−1∥∇u∥2L

2
(Xv )

= ∥∇u∥2L
2
(Xε,v )

)
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Estimate on the resolvent difference II

The following result is not hard to see using the Sobolev trace lemma (actually,
A0 = ΓR0, Γ is evaluation operator in lemma for closedness of form for ∆M).

Proposition

Assume that 0 < ℓ0 ≤ ℓe for all e ∈ E , then the operators A0 and B0 are bounded by a
constant depending only on ℓ0.

Proposition

Assume that

0 < ℓ0 ≤ ℓe ∀e ∈ E , 0 < λ2 ≤ λ2(Xv ) and
volXv

deg v
≤ cvol <∞ ∀v ∈ V ,

then ∥Aε∥ = O(ε1/2) and ∥Bε∥ = O(ε3/2), and the errors depend only on ℓ0, λ0 and cvol.
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Estimate on the resolvent difference III

Proof.

For Aε, we have

∥Aεw∥2Gmax = εm
∑
v∈V

∑
e∈Ev

∣∣−∫
e
ue(v)− −

∫
v
uv
∣∣2

≤ εC(ℓ0)
( 1

λ2
+ 1

)∑
v∈V

∥∇u∥2L2(Xε,v ) ≤ εC(ℓ0)
( 1

λ2
+ 1

)
∥∇u∥2L2(Xε)

using the prop. comparing averages, where u = Rεw . Now, since u ∈ dom∆Xε , and since
∆Xε is the operator associated to the quadratic form, we have

∥∇u∥2L2(Xε) = ⟨∆Xεu, u⟩L2(Xε) = ⟨∆Xε(∆Xε + 1)−1w , (∆Xε + 1)−1w⟩L2(Xε) ≤ ∥w∥2L2(Xε)

and the inequality is true by the spectral calculus.
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Estimate on the resolvent difference IV

Proof continued.

For Bε, we have

∥Bεg∥2G = εm
∑
v∈V

1

deg v

∣∣∣∫
Xv

∆Xv u
∣∣∣2 ≤ εm

∑
v∈V

volXv

deg v
∥∆Xv u∥

2
L2(Xv ) (Cauchy-Schwarz)

= ε3
∑
v∈V

volXv

deg v
∥∆Xε,v u∥

2
L2(Xε,v )

≤ ε3cvol∥∆Xε(∆Xε + 1)−1w)∥2L2(Xε) ≤ ε3cvol∥w∥2L2(Xε)

using the scaling behaviour ∆Xv = ε2∆Xε,v and εm+1∥w∥2L2(Xv )
= ∥w∥2L2(Xε,v )

, where again
u = Rεw .
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Finale: the main result

Combining the previous results (theorem on resolvent difference and estimates on Aε and
Bε), we have shown the following:

Theorem (P:06,12,Exner-P:09/13)

Assume that

0 < ℓ0 ≤ ℓe ∀e ∈ E , 0 < λ2 ≤ λ2(Xv ) and
volXv

deg v
≤ cvol <∞ ∀v ∈ V ,

then
∥RεJ − JR0∥L2(X0)→L2(Xε) = O(ε1/2),

where the error depends only on ℓ0, λ0 and cvol.

Theorem

Under the same assumptions as above, the (Neumann) Laplacian ∆Xε converges to the
standard (Kirchhoff) Laplacian ∆X0 in the generalised norm resolvent sense.
In particular, the abstract results apply, i.e., we have convergence of the spectrum
(discrete or essential) and we can approximate φ(∆Xε) by Jφ(∆X0)J

∗ in operator norm
up to an error of order O(ε1/2).
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Finale: the main result and the missing pieces of its proof

Idea of proof.

We have to show that J is δε-quasi unitary. It is not hard to see that

(J∗u)e(s) = εm/2

∫
Ye

ue(s, ·) dYe ,

and that
J∗Jf = f

for all f ∈ L2(X0) (i.e., going from the metric graph to the manifold and back, we do not
loose information).
Hence we only have to show that

∥u − JJ∗u∥2 =
∑
v∈V

∥uv∥2L2(Xε,v )+
∑
e∈E

∫
Me

∥ue(s, ·)− −
∫

e
ue(s, ·)∥2L2(Yε,e ) ds ≤ δ2ε∥(∆ε + 1)u∥2

for some δε → 0. Actually, this can be done using similar ideas as before. For details, we
refer again to [Pos12, Sec. 6.3], and one can show that δε = O(ε1/2) under the additional
assumption that 0 < λ0 ≤ λ2(Ye) (the first non-zero eigenvalue of ∆Ye on Ye).
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Outlook

One can also treat (magnetic) Schrödinger operators on discrete, metric graphs and
thin branched manifolds (see Details can be found in [EP07, Sec. IV, VI] and [EP13])

Using properly scaled (magnetic) Schrödinger operators on thin branched manifolds,
one can basically approximate all type of self-adjoint vertex conditions, see [EP13].
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Fifth lecture: Convergence Laplacians on thin branched manifolds Outlook and open problems

Some open problems

Let us mention here some on-going research of problems, which are still open or at least
not completely treated.

Consider other types of convergences, like convergence of the operators in
Hilbert-Schmidt norm: For the wave operators e−t∆Xε , the convergence
e−t∆Xε J → Je−t∆X0 in Hilbert-Schmidt norm is nothing but the L2-convergence of
the heat kernels.

Consider non-linear operators on metric graphs and thin branched manifolds (there
are already some results for this concrete case, see e.g. [Kos00] for a semi-linear
equation).

Consider multi-particle models on metric graphs (there are already some partial
results in this case). Can one develop a similar abstract framework for convergence
of operators in different spaces in this setting?

The case of the Dirichlet Laplacian is much more complicated, due to the fact that
the lowest transversal Dirichlet eigenvalue is no longer 0, but of order ε−2. In order
to obtain a reasonable convergence, on has to rescale the operator ∆D

Xε
suitably.

What is know in this case is an eigenvalue asymptotic (if Xε is compact), but in most
of the cases (“generically”), the limit operator on the metric graph is decoupled
(e.g. ∆D,dec

X0
, hence physically not very interesting. We refer to [Gri08, MV07, Pos05]

for details and [Pos12, Sec. 1.2.2] for a history on this problem and more references.
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