Diffusion problems on metric graphs

Delio Mugnolo
FernUniversitat in Hagen

SOMPATY School, September 2023

1/90



@ Heat equation and heat kernels

e Laplacians on metric graphs

© Spectral geometry
@ Basic estimates in terms of total length
o Alternative estimates using different quantities

© Thermal geometry

© Nonlinear diffusion
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du

a(t,x):Au(t,x) t>0, xeQ
u(0, x) = wo(x) x €
u(t,z) =0 t>0, z€0Q

If Q C RY is open, Lipschitz, bounded, then A with Dirichlet BCs is self-adjoint and
negative semidefinite, and it has compact resolvent:

o the eigenvalues A\, k € N, of —A have finite multiplicities and accumulate at +oo

o there exists an ONB of L?(f2) consisting of corresponding eigenfunctions ¢k, k € N.
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@ Spectral Theorem:
u(t, x) = e uo(x)

> e (i, o) 2y x (%)
keN

/Q S e Mg (x)n(y) uo(y) dy

keN

: / pe(x, y)uo(y) dy
Q
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@ Spectral Theorem:
u(t, x) = e up(x)

= Z e {r; o) 120y Pk(X)
kEN

/nze_w@k(x)@k()/)uo(y)dy

keN

: / pe(x, y)uo(y) dy
Q

e e is compact, self-adjoint, and positive

definite
~+ Mercer's Theorem: the series

pe(x,y) =Y e Mpu(x)pu(y)

keN

James Mercer, 1883-1932
converges absolutely and uniformly in
Q x Q, forall t > 0.
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Heat kernels

(X, d, ) metric measure space, A operator on LP(X; u)

p = pe(x,y) : (0,00) x X x X — C is the heat kernel associated with A if Vt > 0,
Vx,y € X

Q

© 6 e é

pe(x, )f () € LY(X) for all f € LP(X)

t = pe(-,y) € CH((0,00); LP(X)) N C ((0, 00); D(Ax))
%pt('ay) = Axpt('a)/)

Pers(x,¥) = [y pe(x, 2)ps(2, y) dp(2)

L, Jx pe( ) (y) duly) = £(-) (in LP(X)) for all f € L°(X)
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Let A be differential operator on L?(Q) (with BC)

@ If there is a heat kernel associated with A, then

ou

—(t,x) = Au(t, x t>0, xeQ
" 04 t,x) = Aul(t, )

u(0,x) = wo(x) x €

is well-posed.
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Let A be differential operator on L?(Q) (with BC)

@ If there is a heat kernel associated with A, then

ou

—(t,x) = Au(t, x t>0, xeQ
" 04 t,x) = Aul(t, )

u(0,x) = wo(x) x €

is well-posed.

o (x) well-posed # A has a heat kernel: e.g. Q =R, A= %.
Then u(t,x) = [ oxrt(y)uo(y)dy
but pe(-,y) = 6.4+(y) & H'(R)
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Let A be differential operator on L?(Q) (with BC)

o If there is a heat kernel associated with A, then

@(Lx):Au(t,x) t>0, xeQ
(%) ot
u(0,x) = wo(x) x €
is well-posed.
o (x) weII—posed # A has a heat kernel: eg. Q =R, A= 2.
Then u(t, x) fR et ( (v)dy

but pe(-,y) = d4e(y) ¢ Hl( )
@ A has a heat kernel %

(6y) = e M ou(x)ex(y)

keN

Ix—y|?
7

eg =R, A= az,Pr(X}’) ﬁe
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Even if

pilxy) = 3 e M (x)euly),

keN

this may be difficult to use to deduce information on the heat equation.

However,

@ pi(+,) > 0 Vt & parabolic strict maximum principle
(i.e., up >0, u# 0= u(t,-) >0Vit)

@ 0 < p(,) <1Vt < Markov property
(e, 0<u<1=0<u(t,)<1Vr)

o 1P (x,y)| < pP(x,y) < domination
(e (0] < uf? = ()] < u®(2) Vt)

@ pi(-,-) € C=(X x X) Vt > 0 < smoothing effect
(i.e., up € D'(X) = u(t,-) € C°°(X)); Schwartz—Hrmander
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Theorem

Given G on finitely many edges of finite length, the Laplacian Ag on G generates an
analytic Co-semigroup on L*(G). Indeed, it is associated with a heat kernel p9 = p¢(x, y)
that satisfies.

0<pd(x,y) <1 foralltandallx,y €G;
if G is connected, 0 < p¢(x, y) for all t and all x,y € G;

if Dirichlet conditions are imposed on a subset VP C V, pg;vD (x,y) < pg(x,y);

e both p¢ and 62 37 p? are Jointly Lipschitz continuous, but p; ( ,y) Is not
continuously dlfferentlable for any y unless G is a loop or a path.
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Co-semigroups

Definition
Let E be a normed space. A Co-semigroup is a family (T (t)):>o0 of bounded linear
operators on E such that

o T(0)=1d

o T(t+s)=T(t)T(s)

@ lime_o T(t)f =f forall f € E.

Example

T(t)f(:-) =f(t+-)is a G semigroup on E = LP(R) for any p € [1,00) (but not for
p = oo: Exercise).

Example

T(t)f(-) = e (-) is a Cp semigroup on E = LP(Q) for any p € [1,00) and any
g € L*=(X).
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Generators
Definition
An operator A on E is said to be a generator of a Cy-semigroup (T (t)):>0 on E if

D(A) = {fe E:ﬂtgr&%}

Af — lim 2B = F
t>0+ t

Example
T(t)f(-) = f(t+-) on LP(R) is generated by

D(A) = W"P(R)
Af = £

Example
T(t)f(-) = eOF(-) on LP(Q), Q C R is generated by

D(A) = L7(Q)
Af = gf.
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Recall:

p = pe(x,y) : (0,00) x X x X — C is the heat kernel associated with A if Vt > 0,
Vx,y € X

@ pix,)f()) € LX) for all f € LP(X)

@t pe(,y) € CH((0,00); LP(X)) N C((0, 00); D(AL))

L) %Pt(',}/) = Ath(',y)

Q pf+5(X7y) = fx pf(X7 Z)pS(Z,y) dM(Z)

@ lim [y el y)F(y) dpuly) = £(2) (in L(X)) for all £ € L"(X)
Example

If there is a heat kernel p associated with A, then A generates on E = L2(X; u) a
Co-semigroup given by

T(t)f = / e V)FY) duly), 20,
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Proposition

For a generator A of a Co-semigroup (T (t)):>0 on E the following hold:
o A is linear;
e if f € D(A), then T(t)f € D(A) and d—dtT(t)f = T(t)Af = AT(t)f for all t > 0;
o A is closed and densely defined;

@ (T(t))e>o determines its generator uniquely, and vice versa.

Proof.

Exercise 0

The Co-semigroup generated by A is denoted by (e™):>o.
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Analytic semigroups

Definition
A Co-semigroup (e")¢>0 on a Banach space E is called analytic if
[EAe™ f|| < ||

for some ¢ > 0 and all t € (0,1] and f € D(A).

In particular,
A
[Ae £ < c(e)IIf]

i.e., e” is bounded from E to D(A), hence (Exercise) from E to (0, D(A¥), for all
t > 0.
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Example
o T(t)f(-) = e"V0) s analytic, for any g € L>(Q);
o T(t)f(-)=f(t+-)is NOT analytic.

Remark

A Cp-semigroup (e*2 )¢>o is analytic if and only if for some 6 € (0, ) it has an analytic extension

(emg )tex, that is bounded on ¥ N {z € C: |z| < 1}, where

To:={re®:r>0, |a| < 6}.
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Any closed quadratic form 2l on LZ(X) is associated with a unique self-adjoint, positive
semi-definite operator A on L?(X), and vice versa: there holds

D(A) = {f € D() : 3g € L*(X)s.t. a(f,h) = (g, h) Yh € D(a)}
Af = —g

where a is the bilinear form corresponding with 2, i.e., 2A(f) = %a(f, f).
Furthermore, A has compact resolvent iff D(2) is compactly embedded in L2(X; ).
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Self-adjoint operators and the Spectral Theorem

Let A be a self-adjoint, negative semidefinite operator on L?(X; 1) with compact
resolvent.
Then

o L?(X; i) has an ONB of eigenvectors of A: (— Mk, Pk )keN;
@ A can be diagonalized:

keN

D(A) = {f € LP(X;m): D> Nelf 0n) < oo},
Af = =" M(f, o)k

o A is associated with a closed quadratic form 2 given by

D(a) = {f € L2(X;p) s > Mlfron)? < oo}

keN

a(fvg) = Z)‘k(fv ‘pk)(@k,g)'

keN

'\ >0
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Semigroups associatd with closed quadratic forms

Proposition

Every self-adjoint, negative semidefinite operator generates an analytic semigroup.

Proof.
For simplicity, only for operators with compact resolvent:

e By functional calculus, e” := 3, .\ e (£, i) ¢« is a well-defined bounded linear
operator on L*(X; u);

e Given f € D(A) and t >0

d _ 1
A FI12 = [[+-LetAF)12 — Ak (F 2 - Ly
[EAe™F " = [|t 4 e fl kelet/\ke (00" < < IIFl
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© Heat equation and heat kernels

© Laplacians on metric graphs

© Spectral geometry
@ Basic estimates in terms of total length
o Alternative estimates using different quantities

@ Thermal geometry

© Nonlinear diffusion
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Introducing metric graphs

Figure: Valentina Vetturi, Tails, 2023
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Introducing metric graphs

Let
o E = {e;,e,...} finite or countably infinite set (“edge set”)
e {:E — (0,00) (“edge lengths")
® ~ equivalence relation on V :=| |, .{0, fe} (“wiring")

Define £ := | |.c¢[0, £e] and extend canonically ~ to &.

Then G := E/N is a metric graph and V := V/N its vertex set.

—C >

G := (V, E) is the underlying combinatorial graph of G.

All topological features (number x of connected components, Betti number
B = #E — #V + K, etc.) are determined by ~.
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The metric measure structure of G does not change upon insertion of artificial, degree-2
vertices.

O

Inserting degree-2 vertices defines an equivalence relation. We will not distinguish
between a metric graph and any of its representatives.
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The metric measure structure of G does not change upon insertion of artificial, degree-2
vertices.

O

Inserting degree-2 vertices defines an equivalence relation. We will not distinguish
between a metric graph and any of its representatives.

A metric graph does not have an intrinsic notion of boundary!, but each of its subgraphs
does.

!Not even the vertices of degree 1 are consistently “boundary”! E.g., the hot spot conjecture dramatically
fails for metric graphs: the hot spots need not be located at vertices of degree 1.
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Goal: define a Laplacian on G by means of a quadratic function on L*(G)
Idea: integrate —AYf € L*(G) against a test function h € C(G) N L*(G).

(—A%F, h) = / F(x)h(x) dx
:—Z/ ' (x) he(x) dx

ecE

,72 x)dx B JrZ/ h(x) dx

ecE ecE

b Zaf )+2/

e~V ecE

iZ/ £ (x)h.(x) dx = a(f, h)

eckE

~
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Goal: define a Laplacian on G by means of a quadratic function on L2(g).
Idea: integrate —AYf € L*(G) against a test function h € C(G) N L*(G).

(—A%F, h) = f/gf”(x)h(x)dx
Le
:—Z/ ' (x) he(x) dx

ece 70
,72@/ x)dx - +Z/ h(x) dx

ecE ecE

L _h) Zaf )+2/

e~V ecE

:2/ £ (x)h.(x) dx= a(f, h)

eckE

~
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Consider
HY(G) :== {f € C(G)N L*(G) : f' € L*(G)}
and
D(AY) = — {f € H'(G) NEDH (0,) : > %(v) =0We v}

ecE e~V

Proposition (Pavlov—Faddeev 1983, Nicaise 1986)

AY is a self-adjoint operator on L?(G) with compact resolvent.

Proof.

o It suffices to prove that AY is associated with the closed quadratic form
ad(f,g) := Jo f'(x)g'(x) dx with domain D(a%) := HY(G).

o Already proved: AY C A. Exercise: prove A C AY.
o D(a9) = H(G) C B.ce H'(0,£e) < Bece L7(0, £) = L7(G)-

Remark

More generally, every bounded elliptic bilinear form a on L2(X; ) is associated with an operator that generates
an analytic semigroup on LZ(X; 1); the generator is self-adjoint iff a is symmetric.

oA
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Useful information about heat kernel on metric graphs?

.. . g . .
Hardly so. Explicit construction of the heat kernel of (etA )e>0 actually available, via
parametrix; however, the formula yields a hardly tractable series.

Proposition (Roth 1984; Becker—-Gregorio—M. 2021)

AY s associated with a heat kernel p9 given by

1 _ length('y)z
g § : —
X = « e 4t
YEPx,y

for appropriate “scattering coefficients” a(P) € [-1,1].

Also already known:

pe(x,y) ==Y e Mo (x)eR (v)
keN

(uniformly in G x G, for all t > 0).
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Markovian property

Proposition (Kramar—M.-Sikolya 2007)

(€ )e>0 is a Markovian semigroup; it satisfies a strict maximum principle if G is
connected.

Proof.

o Beurling—Deny 1959: If A ~ a, and a > 0, then (e"):>0 is Markovian iff f € D(a)
implies f A1 € D(a) and a(f A1,(f —1)") > 0.
Ouhabaz 1996: If A ~ a, and if (€”):>0 is positive, then (e™):>o satisfies the strict

maximum principle iff for each measurable w C X p(w) =0 or (X \w) =0
whenever 1, € D(a) for every f € D(a).

f. € Hl(O,ée) implies . A1 € Hl(O,ée) and

/0 (B A1) () — 1)) (x)dx = / (£ A1) (0)( — 1)7) (x) dx = 0.

{f<1}

Also, 1., f ¢ H*(0,£.) < C[0, £e] unless we = 0 or we(0, £).
To conclude, observe that f € C(G) implies f A1 € C(G).
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Domination

A Co-semigroup (T(t))e>0 on LP(X) is said to dominate another Co-semigroup (S(t))¢>o0

if |S(t)f| < T(t)|f] for all f € LP(X) and all t > 0.

Proposition

Upon imposing Dirichlet conditions on VP C V we obtain a new Cy-semigroup

ta9VP : . N
(e )e>o that is dominated by (e )i>o.

Exercise (Diamagnetic inequality for point interactions)
Same holds if magnetic vertex conditions
u(v+) = e u(v—)

are imposed on finitely many vertices V'™ of degree 2.
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Given two subspaces U, V of L*>(X; ), U is a generalized ideal of V if
euelU=|ueV
eucl, veyV,

v|<|ul = vsgnue U.

Example

Hj,,t,-pe,(o, 1) is a generalized ideal of H}.,(0,1); neither of them is a generalized ideal of
H'(0,1), but H3(0,1) is.
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Proof

@ QOuhabaz 1996 : Let A~a, B~b, S ~s. If a,b are both restrictions of s, and if
(€)e>0, (€)e>0 are both positive, then (e");>o dominates (*¥),> iff D(b) is a
generalized ideal of D(a).

o If Dirichlet conditions are imposed on VP C V, then the corresponding operator
A9V is associated with the quadratic form
b(f,g) =a(f,g), f,g€D(b):=Hy(G; V")
where Hg(G; VP) := {f € HY(G) : f(v) =0 W € VP}.
@ Let us check Ouhabaz' criterion: introduce
s(f.6)= [ F(0g()dx  fig e D(s) = @) H'(0.4)
g ecE

which satisfies the Beurling—Deny criterion.

o H3(G;VP) is a generalized ideal of H(G): f € H}(G;VP) = |f| € H*(G); and
lg| < |f| with f € H3(G;VP) = gsgn f € Hi(G: VD).
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Theorem (Kramar-M.-Sikolya 2007, M.—Romanelli 2007, Bifulco—M. 2023)

Given G on finitely many edges of finite length, the Laplacian Ag on G is associated with
a heat kernel p9 = pg(x,y) that satisfies.

0< pf(x,y)<1foralltandallx,y €G;
if G is connected, 0 < p(x,y) for all t and all x,y € G;

if Dirichlet conditions are imposed on a subset VP C G, ptg;vD (x,¥) < pE(x,y);

both p¢ and %%pf are jointly Lipschitz continuous, but pf (-,y) is not
continuously differentiable for any y unless G is a loop or a path.
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Smoothness of functions in D(AY)

Lemma (M.—Pliimer 2023)
D(AY) is continuously embedded in Lip(G).

Proof.
o D(A9) — C(G)N @ H*(0,4) — C(G) N D W (0, L).

ecE ecE
o Let ue C(G)N @ Wh>(0,%). Let x,y € G and let v C G be a path connecting x
ecE
and y. Then

lu(x) = u(y)l = /U'(t)dt‘ < length(7)|[u'|co-

@ + arbitrary =
|u(x) = u(y)| < llu" e d? (x, ¥)-

Therefore, C(G) N @@ W*(0, £.) — Lip(G).
ecE
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Theorem (Kramar-M.-Sikolya 2007, M.—Romanelli 2007, Bifulco—M. 2023)

Given G on finitely many edges of finite length, the Laplacian Ag on G is associated with
a heat kernel p9 = pg(x,y) that satisfies.

0< pf(x,y)<1foralltandallx,y€G;
if G is connected, 0 < p:(x,y) for all t and all x,y € G;

if Dirichlet conditions are imposed on a subset VP C G, pQ:VD (x,¥) < pE(x,y);

both p¢ and dz éyZ pY are jointly Lipschitz continuous, but p{(-,y) is not
continuously d/fferent/ab/e for any y unless G is a loop or a path.
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Proof - #1

e Kantorovi¢-Wulich: Given p € [1,00), any operator in £(L"(X); L>°(X)) has an
integral kernel of class L*°(X; LP,(X)), and vice versa.

Leonid Vital'evi¢ Kantorovi& Boris Sacharowitsch Wulich
1912-1986 1913-1978
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Proof - #1

e Kantorovi¢-Wulich: Given p € [1,00), any operator in £(L"(X); L>°(X)) has an
integral kernel of class L*°(X; L",(X)), and vice versa.

Leonid Vital'evi¢ Kantorovi& Boris Sacharowitsch Wulich
1912-1986 1913-1978

o D(AY) < Lip(G) — L®(G): Therefore, e"2° (L2(G)) C L°°(G) and by duality
etAg(Ll(g)) C L*(G): by the semigroup law etAg(Ll(g)) C L=(G), i.e., e has a
heat kernel pf € L>=(G x G), for all t > 0.

o pi(,y) € D(AY) for all t > 0, but functions in D(AY) are not differentiable at any
vertex of degree > 3.
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Proof - #2
o Let t >0 and f € L*(G). Because (i) D(AY) — Lip(G) and (ii) e*2% is bounded
from L?(X; u) to D(AY)
g
t)d? (x, x") e fllp(as)
t
e)dg(x,X')HfHLz(g) vx,x' €G.

"2 F(x) — e F(x)| < C
2 C

@ Hence, for all f € L2(g)
(.0 )= M) = | [ F0) o) = il ) ]
’/ )(pe(x,y) = pe(X', y)) dy’

2% (F(x) — 7))
< C'(t)dY (x, x|l i2(0)

o We finally conclude that

[[Pe(x, ) = pe(X, )| 2,y = b | (£, (pe(x,-) = pe(xX', ) |

[[f]l,2=1
< C'(t)d9(x, x).
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Proof - #3

@ By the semigroup law
plxiy) = [ py(x.2)py () dz
g

whence fora.e. y € G
/ / t g ’
[Pe(x,¥) = pe(x, V)l < C(S)Ps (5 ¥)ll 20y 0 (%, X)

t

< C"G)lIpglli= gxg)d? (x,x'),

i.e., G2 x> pe(x,-) € L°(G) is Lipschitz.
o Finally,

o) = i) = | [ o302y etz = [ oy 2oyl )z
< ||p%(X7 )||L2(g)||p§(7y) - p%('ay,)HLQ(g)
T ||P§(7}’/)HL2(Q)HP§ (X7 ) - P% (X/7 ')”L?(g)
< C(5)(d(x,x) + d%(y,y)):

o Likewise for 59—;25722[3?(', ), using p:(-,y) € D(AY) forae. y € G.
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More general operators

Proposition

Everything we have seen is still valid if A is replaced by

0 0
Ac vyl = Ix (d')a) +V
with “6-interaction”

continuity + Zce(v)

e~V

for c € L=(G), V € LX(G), and (7(v))vev.

Ol (v) +1(v)u(v) = 0

Proof.

Ac,v,~ is associated with

0y (F) = /g 2(IF () dx + [3 VEIFGIP dx + 3 A (W)IF()?

veVv

with same form domain D(af,vﬂ(f)) = D(a%) = H*(G). O

I Dirichlet conditions at a vertex can be obtained letting v(v) — +o0. e o5



Lack of domination

Proposition

. .. g .
If G, G’ any two different wirings over the same edge set, then ' does not dominate
’

g
e®” for any t > 0.

Proof.

D(a“) is not a generalized ideal of D(ag,) (Exercise) O
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Miscellaneous comments

o Kennedy-Lang 2020: Similar results also hold operators with V € L*(G;C),
(7(v)vev C C. In particular, [e"V:7| < effeReV.Rery

o Kurasov 2010, Berkolaiko-Weyand 2012, Egidi-M.—Seelmann 2023: One can also
add a magnetic potential: somewhat trivial, because a gauge transformation makes
A, similar to A. A diamagnetic inequality holds:

le™2e] < 2 for all t > 0.

o Gliick=M. 2021: If G, G’ any two different wirings over the same edge set, then eta?

. g
does not even eventually dominate e2

. g g’
there is no ty > 0 such that e~ < " forall t > to.

Open question: Given two different wirings G, G, is there M > 0 such that
A7 < Me2% for all t > 0?
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Long-time behavior

By resolvent compactness, Ag has an ONB of eigenfunctions (¢«) with associated
eigenvalues — A\ = — A\ (G)°.

If G is connected, then Ao = 0 (simple!) with o = 1g.

Because 2% £(-) = geib\k@k(') Jg () f(x) dx,

16277 [ enarGaaxl = I3 [ enfax|

k=1 g
<e Yf|

Estimating A1 is crucial to study the long-time behaviour!

2Recall: Ag > 0!
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The Laplacian on metric graphs and their underlying combinatorial graphs

Given G, consider the underlying combinatorial graph G, its degree matrix D¢ and its
discrete Laplacian £€.

Proposition (von Below 1985)
If all . = ¢, TFAE:

@ )\ is eigenvalue of —AY

1 1
@ o := cosV/\ is eigenvalue of Id — D™ 2 LSDC 2

1
a / sV
& ® A

& B
(7 + /)2 @r — vm)?
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© Heat equation and heat kernels

© Laplacians on metric graphs

© Spectral geometry
@ Basic estimates in terms of total length
o Alternative estimates using different quantities

@ Thermal geometry

© Nonlinear diffusion
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Nicaise' Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph G on finitely many edges of finite length A\1(G) > ‘2, with equality

ifG=—e———— y

Exercise (Nicaise 1987)

Prove the estimate A\1(G; VP) > W if VP £ 0, with equality iff G=o—— o
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Nicaise' Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph G on finitely many edges of finite length A\1(G) > % with equality
fG—e— o
v

Theorem (Friedlander 2005)
Nicaise' Inequality is sharp. Indeed
7T2(j + 1)2

Ai(Ag) > TaGR

for all j € N,

with equality if (and only if!) G is a metric star on j + 1 edges of same length.

Exercise (Nicaise 1987)

2

Prove the estimate A1(G; VD) 2 4]G|2

if VP £ 0, with equality iff G= o .
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Proof of Nicaise' Inequality — Kurasov—Naboko's version

Produce Gy by replacing each edge e in G by two identical copies of e: then
|G| = 2/G].
Take (A1, 1) and clone ¢; to produce an admissibile test function ¢\? for A(G2)):

observe that @52) 1 1g,,.

2
Also, [|¢? Iz = 2lle1llz2, I 112 = 2/|¢}]|2: hence

|\<P1\|L2 - I || _
A(G) = le1ll?, 2 feng(z)) ||sz = A(90)-
flig,

)
o Cut through all vertices to turn Gz) into a cycle C: this is possible because each
vertex in G(z) has even degree, so G contains a Eulerian cycle: A;1(G) > A1(C).

2 2
However, Ai(C) = {7z = G-
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Selected surgery principles

Proposition (Kennedy—Kurasov—Malenovd-M. 2016)
Given G with finitely many edges of finite length, produce G' by

@ cutting through a vertex v to create two new vertices vi,v2 € G, or
@ attaching a pendant graph H at a vertexv € G.

Then )\k(g) Z Ak(g,).
Furthermore, A1(G) = \1(C) if

@ G is a figure-8 graph and C is a cycle graph with |G| = |C|.

Proof.

(1) H'(9) > HY(9)

(2) Take (A1, 1) and extend i by continuity to a function that is constant on 7. Then
p11lg — |H|14 is orthogonal to 15/, hence an admissible test function for A (G').

(3) Construct C from G by cutting through the (only) vertex v, thus creating vi,v2. By
(1), M(C) < Mi(9).

Pick a ground state ¢ on C: up to rotation, wlog ¥1(v1) = ¥1(v2): thus, ¢1 € Hl(g) is
an admissible test function on G, hence A\1(G) < A:(C). O

v
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An upper estimate

Theorem (Kennedy—Kurasov—Malenové—M. 2016)
For any metric graph G on E > 2 edges of finite length
i =
IGI>

Equality holds for equilateral stars and equilateral pumpkin graphs...

A1(9) <

M.—Pivovarchik 2022: ...and for an infinite class of metric graphs (“inflated stars”, after
Butler—-Grout 2011).
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Proof

Glue all vertices to produce a new metric graph G’ (a “metric flower”): then

A1(G) < M(G).

@ Produce a figure-8 graph G” by plucking all petals of the metric flower but the two
longest ones: then \;(G') < \;(G”) for all j.

A1(G"”) = Mi(Cycle of same total length as G') = % (easy proof using
symmetry).

@ However, by the pigeonhole principle |G”| > 2%.
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Weyl asymptotics
Recall:

Proposition

Given G on E < oo edges of finite length,

2(: 2
A(Dg) > ™ (‘flglzl) for all j € N,

E271'2(j+ 1)2
Aj <
J(g) — |g|2
Proof.

Corollary (Nicaise 1987)
(.
72 IG/?

(=] = = =
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Weyl asymptotics

Recall: 2 )2
m™(+1 .
N(Ag) > ————— forall j €N,
J( Q) = 4|g|2 J
Proposition
Given G on E < oo edges of finite length,
E27T2(j+ 1)2

Proof.

Repeat the previous proof and, in the last step, observe that

Ai(G") < Aj41(Cycle of same total length as G') < (1) (again by symmetry).

g//lz

Corollary (Nicaise 1987)
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Eigenvalue estimates with Dirichlet vertex conditions
Proposition (Plimer 2022)
If G is a graph with finitely many edges of finite length, then

1

\/D
M(GiVT) 2 1G] Inr(G; VD)

where Inr(G; VP) := sup,g d(x, VP).

Proof.
Let f € H&(Q;VD), x € G, veVP, v a geodesic between x,v. Then

) = ) = () = [ Fy)dy

~

and
IF()P < L(v)/ |F'(y)I* dy < d(x, V)| [IZ2(g)-
Y

Therefore,
||f“i2(g) < /g d(X,VD)dXHf/Hiz(g) = ‘g|][g d(X’VD)dXHf/”%Z(g)

< 1G] Inr(G: VP | Parcn. e




Lower estimate by diameter and nodal counting

Corollary

If G is a graph with finitely many edges of finite length, then

Vk
A > <
«(9) 2 |G| Diam(G)
where vy is # of nodal domains Gi, ..., Gk of Yy in particular,
2
>\ > T~ N )"
1(9) 2 |G| Diam(G) ]
Proof.
M(G) = A1(Gi; 0Gi), hence 1
A > -
{92 IgTinr(g; 00))
By the pidgeonhole principle, there is j with |Gj| < iy 0

=y
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Lower estimate by mean distance

Corollary (Baptista—Kennedy—M. 2023)
If G is a graph with finitely many edges of finite length, then

1
A1(G) > .
19) = G1f;.. o d(x,y) dxdy

Proof.
o Pick xo € G with f; d(x0,y)dy = ;5 d(x,y)dxdy.

o Use Pliimer's estimate to deduce (for VP := {xo})
1< MG PolIGHf  dlxy)axdy.
gxg

o Consider the nodal domains G of AY, assume wlog that xp € G+ and deduce from
domain monotonicity of the Dirichlet eigenvalues that

A1(G) = Mi(G+:0G+) > M(Gi {x0})
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Lower estimate by avoidance diameter

The avoidance diameter of G is

avoid(G) := max)[r;isn1 d(v(—=x),v(x))

v

where max is taken over all injective con-
tinuous 7 : S' — G.

g

avoid(g)
trees 0
equilateral figure-8 graph %
equilateral flower graph on k edges ﬁ
equilateral pumpkin graph on k edges %
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Lower estimate by avoidance diameter

The avoidance diameter of G is
g

trees

avoid(G) := max)[r;isn1 d(v(—=x),v(x))

= equilateral figure-8 graph

equilateral flower graph on k edges

where max is taken over all injective con- CyUEeE] Frm D G o (5 i
tinuous 7 : S' — G.

Proposition (Berkolaiko—Kennedy—Kurasov—M. 2023:)

6/3|

Al(g) < W(g)?’
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A homotopy lemma

Lemma

Let 2 be closed quadratic form with dom(2) < L2(X; j1). Assume the associated

operator A on L?(X; i) to have one-dimensional null space spanned by some u.
If

@ ¢.: [0,1] — D(a) \ {0} satisfies 1po = —1)1 and
e [0,1] > t > (¥, u) € R is continuous

then the second lowest eigenvalue \1(A) of A satisfies

A1(A) < Ql(¢t°2) for some ty € (0,1).
H@bm\|L2

In our relevant case: 2A(f) = [, If'|?dx, u=1.
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A homotopy lemma

Lemma

Let 2 be closed quadratic form with dom(2) < L2(X; j1). Assume the associated
operator A on L?(X; i) to have one-dimensional null space spanned by some u.
If

@ ¢.: [0,1] — D(a) \ {0} satisfies 1po = —1)1 and
e [0,1] 3 t — (¢, u) € R is continuous

then the second lowest eigenvalue \1(A) of A satisfies

A1(A) < m(zpt”z) for some ty € (0,1).
146 I12

In our relevant case: 2A(f) = [, If'|?dx, u=1.

Proof.
Because (v, u) = —(t)1, u), there is to with (g, u) = 0. Now, use 1y, as a test function
in the Rayleigh quotient. O
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Sketch of the proof

Apply the homotopy lemma to

1/Jt 6= Tw(e"’"),%avoid(g) - Tfy(—e"""),%avoid(g)’ te [07 27T):

where 7y is the curve realizing the avoidance diameter and

( ) d—d(X,y), Ifd(X,y)Sd,
T =
0 0, otherwise.

Then

A1(G) < max 191 69|

~ telo,1] 2|‘T'y(ei7"),avoid(g)||2 - avoid(g)3'
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© Heat equation and heat kernels

© Laplacians on metric graphs

© Spectral geometry
@ Basic estimates in terms of total length
o Alternative estimates using different quantities

@ Thermal geometry

© Nonlinear diffusion
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Shape optimization wrt heat kernel?
Already seen:

If G,G’ are two different wirings over the same edge set,

pY(x,.y) <pi (x,y) Vx,y€G

for all t > 0 is impossible.

Idea: Consider the overall insulation wrt VP

/ // (x,y) dx dy dt.

Remark
@ Because pf > 0, so is e fg fg pg (x,y) dx dy dt.
D D
@ The Green function G9V"~ is the Laplace transform of p9V" (Exercise).

.vD .
@ If VP = 0, the overall insulation is always = oo, because Jo Js pIV" (x,y) dxdy = |G| (Exercise).
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Path graphs maximize insulation

Theorem

1G] - g o
= M~ < =
12 [E? —/0 ~/Q/th (x,y)dxdydt < 3‘g|

Lower estimate is an equality iff G=

Upper estimate is an equality iffG= e——o

66 /90




Proof (upper estimate)

° [~ pY(x,y)dt is the Green's function of G, i.e., the integral kernel of A~

e Thus, [ e e pd(x,y)dxdydt = — = A7 (x)dx
@ Describe the integrated heat content in variational terms, following Pdlya:

2
_/(AQ;VD)fll(X)dX: max ||UHL1
g

veri(gve) [lu'13

because the Euler—Lagrange equation for

—Ag;VD u=1

%/gu’(x)h/(x)dx:/gh(x)dx, h e H(G:VP)

@ Mimic Nicaise' doubling trick.

67 /90



Proof (lower estimate)

2
llull?,

2
ueri(gvp) IVl

o Use again [/~ el pY(x,y)dxdydt =

@ Consider, as a test function, the function u* that satisfies —u*) = 1 with Dirichlet
conditions on each edge.

@ Check that ) s
fluells el

Juell2, — 12

and use Jensen.
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Landscape functions on metric graphs, after Filoche-Mayboroda

Theorem

Let VP # (. Then each eigenpair (), ¢) of —A9VP (even of the magnetic Laplacian
Ag;VD !) satisfies

O s (-2 2)]
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Landscape functions on metric graphs, after Filoche-Mayboroda

Theorem

Let VP # (. Then each eigenpair (), ¢) of —A9VP (even of the magnetic Laplacian
Ag;VD !) satisfies

O s (-2 2)]
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Application to the heat kernel

Proposition

There exists C = C(G) with

(xy <cC [Zp\kz —tAk:| (_Ag;vD)—11(X)(_Ag.v ) 1( )

Example
If G =

o—0

Same estimates holds even for the heat kernel of the magnetic Laplacian!
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Proof (for general magnetic Laplacians)

@ Consider an ONB of eigenvectors of A9Y” | Then

D
or = M(—A3Y) o

gvP . gvP
and because et® dominates e®a

DL WD, _ WD
ol = IM(=AZY ) oul < II(=AY) ol < Iulllprlloo(=ATY ) 7ML

o Bifulco—Kerner 2022: There exists C(G) such that ||p«|lec < C(G) for all k.
o By Mercer,
D
FV(y) = e M o(x)en(y)
keN

< €GPS IMlPe™ ™ (~A%Y7) 11 (x)(—a%V7) 1e(y).
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Unlike eigenfunctions, the torsion function can be computed explicitly

Exercise

Let G be equilateral (€. = 1) and let v := (—A%Y" )11, for VP # 0. Then the
restriction g := vjy : V. — R is the unique solution of the system

g(v) =

0,
1 1
mgg( —g(w) = 2

veVvP,

veVv\VvP.
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Gradient of quadratic forms

Recall: given a closed quadratic form 2 with corresponding bilinear form a, the
associated operator A satisfies

a(f, h) = (—Af,h) Vf e D(A) and h € D(a)}
Indeed, A is infinitely many times continuously differentiable, and in particular (Exercise)
A'(F)h = a(f, h) = (—AF, h)
. Then —A is the gradient of 2A: —A = 92.
Example

For the Dirichlet form A(f) = 1 [, |Vf(x)[>dx, f € H5(R), there holds
A (flg = [, VI(x)Vg(x)dx = — [, ATPf(x)g(x)dx : i.e., 0% = —A%P.




Gradient of quadratic forms

Recall: given a closed quadratic form 2 with corresponding bilinear form a, the
associated operator A satisfies

a(f, h) = (—Af,h) Vf e D(A) and h € D(a)}
Indeed, A is infinitely many times continuously differentiable, and in particular (Exercise)
A'(f)h = a(f, h) = (—AFf, h)
. Then —A is the gradient of 2A: —A = 92.
Example

For the Dirichlet form 2(f) = 1 [ [Vf(x)* dx, f € Hy(R), there holds
A (flg = [, VI(x)Vg(x)dx = — [, ATPf(x)g(x)dx : i.e., 0% = —A%P.

Example

For all p > 1 2,(f) = %fg |VF(x)|Pdx, f € W,P(Q), is differentiable with derivative

2, (F)h = /Q IVF(x) P2V F(x) Vg (x) dx




Gradient of quadratic forms

Recall: given a closed quadratic form 2 with corresponding bilinear form a, the
associated operator A satisfies

a(f, h) = (—Af,h) Vf e D(A) and h € D(a)}
Indeed, A is infinitely many times continuously differentiable, and in particular (Exercise)
A'(f)h = a(f, h) = (—AFf, h)
. Then —A is the gradient of 2A: —A = 92.
Example

For the Dirichlet form 2(f) = 1 [ [Vf(x)* dx, f € Hy(R), there holds
A (flg = [, VI(x)Vg(x)dx = — [, ATPf(x)g(x)dx : i.e., 0% = —A%P.

Example

For all p > 1 2,(f) = %fg |VF(x)|Pdx, f € W,P(Q), is differentiable with derivative

2, (F)h = /Q V() P2V F(x) Vg (x) dx 1 — /g AZP £(x)h(x) dx,

e., —0%, is the p-Laplacian on Q (with Dirichlet BCs).




Nonlinear semigroups

Theorem (Brezis 1973)

Given a convex, Isc, proper, coercive energy 2 : L>(X; ) — [0, 00], the Cauchy problem
for
Oru + 0A(u) =0

is well-posed.

~ for all initial data up there exists a solution

t u(t) =:e Pu
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Long time behavior vs p-homogeneity

Let 2, be convex, Isc, proper, coercive and p-homogeneous:

@ we can consider
p2U(u)

A1p =
LR T L LKer(2) [|u]lP

> 0;

o u L Ker(2,) is called eigenfunction of 92l for the (variational) eigenvalue X if

Alul]P~2u = 92,(u).
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Convergence to steady state vs p-homogeneity
If p=2,
lu(®)]* < [lu(0)|Pe™?*
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Convergence to steady state vs p-homogeneity
If p=2,
lu(®)]* < [lu(0)|Pe™?*

Theorem (Bungert-Burger 2020)

Let A, be convex, Isc, proper, coercive and p-homogeneous, for p > 1: then the solution
of Oru + 0Up(u) = 0 with u(0) L Ker(2,) satisfies

2 1
“U(t)” < ||u(0)||2—p+(p_2)Al’pt
lu(OIP < lu©)> — 2 — phpt  ifpe[L2).

if p € (2,00),




Convergence to steady state vs p-homogeneity
If p=2,
lu(e)]* < [lu(0)||*e™>*

Theorem (Bungert—Burger 2020)

Let A, be convex, Isc, proper, coercive and p-homogeneous, for p > 1: then the solution
of Oru + 0Up(u) = 0 with u(0) L Ker(2,) satisfies

2 1
Hu(t)H < ||u(0)||2_p+(P—2)/\1,pt
lu(OIP < lu©)> — 2 — phpt  ifpe[L2).

if p € (2,00),

Remark
In particular, for p < 2
lu(O)I>? > (2= p)Aip(Tex —t) and wu(t)=0 Vt> Ta,
h _
where SN 170
~ (2= p)A1p

Likewise: infinite extinction time if p > 2.

< 00
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Estimating A1, = controlling long-time behavior. For Q and p # 2:

o Dirichlet: Bhattacharya (1999)
@ Neumann: Brasco—Nitsch—Trombetti (2016)
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Prototypical Example
The p-Laplacian AJ is (minus) the derivative —19, in L*(G) of the energy
2,(f) = 1/ FPdx,  Fe WH(G) = C(G) N @D WH(0,£).
PJg ecE
(~ continuity + nonlinear Kirchhoff-type vertex conditions)

AY generates on L*(G) a nonlinear (Markovian) semigroup.

(Likewise if Dirichlet conditions are imposed on a vertex subset VP C V.)
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Eigenvalues of (p-)Laplacians on metric graphs

Proposition (Hofmann—Kennedy—M.—Pliimer 2021)
—A§ has countably many eigenvalues 0 = \o,,(G) < A1,5(G) < ... — +o00:

Ampl(G) = (p 1)<|g|) Pt o(nf)  asn— oo,

where T, := p € (1,00).

psm( )’
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Bungert-Burger = If u(0) L 1, then

2 1
(O < Ty

P s if p € (2, 00),

Q
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Bungert-Burger = If u(0) L 1, then

2 1
14O < o+ (o= 2mpt
O < @ = @ phapt i peL2)

if p € (2, 00),

How fast/slow can convergence be?
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Bungert—Burger = If u(0) L 1, then

1
[2=P + (p = 2))\1,pt
u(®)[* < u(0)|*7P = (2 — p)As,pt if pe[1,2).

u(t)|* < O] if p € (2,00),

How fast/slow can convergence be?

Theorem (Del Pezzo—Rossi 2016; Berkolaiko—Kennedy—Kurasov—M. 2017)
Given a graph on E < co edges of finite length, for all p € (1, c0)

P EPxP 0 g B
(p— 1)@ < Ap(G) < (p— 1)‘g—|;’, with equality iff G =

If additionally G is 2-connected:

Ap(9) 2 2°(p — 1)% with equality iff G :<><>:.C>
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Thank you for your attention!
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