Diffusion problems on metric graphs

Delio Mugnolo
FernUniversität in Hagen
SOMPATY School, September 2023

(1) Heat equation and heat kernels
(2) Laplacians on metric graphs
(3) Spectral geometry

- Basic estimates in terms of total length
- Alternative estimates using different quantities
(4) Thermal geometry
(5) Nonlinear diffusion

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}(t, x) & =\Delta u(t, x) & & t \geq 0, x \in \Omega \\
u(0, x) & =u_{0}(x) & & x \in \Omega \\
u(t, z) & =0 & & t \geq 0, z \in \partial \Omega
\end{aligned}\right.
$$

If $\Omega \subset \mathbb{R}^{d}$ is open, Lipschitz, bounded, then Δ with Dirichlet BCs is self-adjoint and negative semidefinite, and it has compact resolvent:

- the eigenvalues $\lambda_{k}, k \in \mathbb{N}$, of $-\Delta$ have finite multiplicities and accumulate at $+\infty$
- there exists an ONB of $L^{2}(\Omega)$ consisting of corresponding eigenfunctions $\varphi_{k}, k \in \mathbb{N}$.
- Spectral Theorem:

$$
\begin{aligned}
u(t, x) & =\mathrm{e}^{t \Delta} u_{0}(x) \\
& =\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}}\left\langle\varphi_{k}, u_{0}\right\rangle_{L^{2}(\Omega)} \varphi_{k}(x) \\
& =\int_{\Omega} \sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(x) \varphi_{k}(y) u_{0}(y) \mathrm{d} y \\
& =: \int_{\Omega} p_{t}(x, y) u_{0}(y) \mathrm{d} y
\end{aligned}
$$

- $\mathrm{e}^{t \Delta}$ is compact, self-adjoint, and positive definite
\leadsto Mercer's Theorem: the series $p_{t}(x, y):=\sum_{k \in \mathbb{N}} e$

converges absotuely and uniformly in $\bar{\Omega} \times \bar{\Omega}$, for all $t>0$.
- Spectral Theorem:

$$
\begin{aligned}
u(t, x) & =\mathrm{e}^{t \Delta} u_{0}(x) \\
& =\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}}\left\langle\varphi_{k}, u_{0}\right\rangle_{L^{2}(\Omega)} \varphi_{k}(x) \\
& =\int_{\Omega} \sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(x) \varphi_{k}(y) u_{0}(y) \mathrm{d} y \\
& =: \int_{\Omega} p_{t}(x, y) u_{0}(y) \mathrm{d} y
\end{aligned}
$$

- $e^{t \Delta}$ is compact, self-adjoint, and positive definite
\rightsquigarrow Mercer's Theorem: the series

$$
p_{t}(x, y):=\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(x) \varphi_{k}(y)
$$

James Mercer, 1883-1932
converges absolutely and uniformly in
$\bar{\Omega} \times \bar{\Omega}$, for all $t>0$.

Heat kernels

(X, d, μ) metric measure space, A operator on $L^{p}(X ; \mu)$
$p=p_{t}(x, y):(0, \infty) \times X \times X \rightarrow \mathbb{C}$ is the heat kernel associated with A if $\forall t>0$, $\forall x, y \in X$
(1) $p_{t}(x, \cdot) f(\cdot) \in L^{1}(X)$ for all $f \in L^{p}(X)$
(1) $t \mapsto p_{t}(\cdot, y) \in C^{1}\left((0, \infty) ; L^{p}(X)\right) \cap C\left((0, \infty) ; D\left(A_{x}\right)\right)$
(- $\frac{\partial}{\partial t} p_{t}(\cdot, y)=A_{x} p_{t}(\cdot, y)$
(0) $p_{t+s}(x, y)=\int_{X} p_{t}(x, z) p_{s}(z, y) \mathrm{d} \mu(z)$
(0) $\lim _{t \rightarrow 0^{+}} \int_{X} p_{t}(\cdot, y) f(y) \mathrm{d} \mu(y)=f(\cdot)$ (in $\left.L^{p}(X)\right)$ for all $f \in L^{p}(X)$

Let A be differential operator on $L^{2}(\Omega)$ (with BC)

- If there is a heat kernel associated with A, then
(*)

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}(t, x) & =A u(t, x) & & t \geq 0, x \in \Omega \\
u(0, x) & =u_{0}(x) & & x \in \Omega
\end{aligned}\right.
$$

is well-posed.

Let A be differential operator on $L^{2}(\Omega)$ (with BC)

- If there is a heat kernel associated with A, then
(*)

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}(t, x) & =A u(t, x) & & t \geq 0, x \in \Omega \\
u(0, x) & =u_{0}(x) & & x \in \Omega
\end{aligned}\right.
$$

is well-posed.

- ($*$) well-posed $\nRightarrow A$ has a heat kernel: e.g. $\Omega=\mathbb{R}, A=\frac{\partial}{\partial x}$.

Then $u(t, x)=\int_{\mathbb{R}} \delta_{x+t}(y) u_{0}(y) \mathrm{d} y$ but $p_{t}(\cdot, y)=\delta_{\cdot+t}(y) \notin H^{1}(\mathbb{R})$

Let A be differential operator on $L^{2}(\Omega)$ (with BC)

- If there is a heat kernel associated with A, then

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}(t, x) & =A u(t, x) & & t \geq 0, x \in \Omega \tag{*}\\
u(0, x) & =u_{0}(x) & & x \in \Omega
\end{align*}\right.
$$

is well-posed.

- ($*$) well-posed $\nRightarrow A$ has a heat kernel: e.g. $\Omega=\mathbb{R}, A=\frac{\partial}{\partial x}$.

Then $u(t, x)=\int_{\mathbb{R}} \delta_{x+t}(y) u_{0}(y) \mathrm{d} y$
but $p_{t}(\cdot, y)=\delta_{\cdot+t}(y) \notin H^{1}(\mathbb{R})$

- A has a heat kernel \nRightarrow

$$
p_{t}(x, y)=\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(x) \varphi_{k}(y)
$$

e.g. $\Omega=\mathbb{R}, A=\frac{\partial^{2}}{\partial x^{2}}, p_{t}(x, y)=\frac{1}{\sqrt{4 \pi t}} \mathrm{e}^{-\frac{|x-y|^{2}}{4 t}}$ but no eigenvalues

Even if

$$
p_{t}(x, y)=\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(x) \varphi_{k}(y)
$$

this may be difficult to use to deduce information on the heat equation.

However,

- $p_{t}(\cdot, \cdot)>0 \forall t \Leftrightarrow$ parabolic strict maximum principle (i.e., $\left.u_{0} \geq 0, u \not \equiv 0 \Rightarrow u(t, \cdot)>0 \forall t\right)$
- $0 \leq p_{t}(\cdot, \cdot) \leq 1 \forall t \Leftrightarrow$ Markov property (i.e., $\left.0 \leq u_{0} \leq 1 \Rightarrow 0 \leq u(t, \cdot) \leq 1 \forall t\right)$
- $\left|p_{t}^{(1)}(x, y)\right| \leq p_{t}^{(2)}(x, y) \Leftrightarrow$ domination (i.e., $\left.\left|u_{0}^{(1)}\right| \leq u_{0}^{(2)} \Rightarrow\left|u^{(1)}(t)\right| \leq u^{(2)}(t) \forall t\right)$
- $p_{t}(\cdot, \cdot) \in C^{\infty}(X \times X) \forall t>0 \Leftrightarrow$ smoothing effect (i.e., $u_{0} \in \mathcal{D}^{\prime}(X) \Rightarrow u(t, \cdot) \in C^{\infty}(X)$); Schwartz-Hörmander

Theorem

Given \mathcal{G} on finitely many edges of finite length, the Laplacian $\Delta_{\mathcal{G}}$ on \mathcal{G} generates an analytic C_{0}-semigroup on $L^{2}(\mathcal{G})$. Indeed, it is associated with a heat kernel $p^{\mathcal{G}}=p_{t}^{\mathcal{G}}(x, y)$ that satisfies.

- $0 \leq p_{t}^{\mathcal{G}}(x, y) \leq 1$ for all t and all $x, y \in \mathcal{G}$;
- if \mathcal{G} is connected, $0<p_{t}(x, y)$ for all t and all $x, y \in \mathcal{G}$;
- if Dirichlet conditions are imposed on a subset $\mathrm{V}^{\mathrm{D}} \subset \mathrm{V}, p_{t}^{\mathcal{G} ; \vee^{\mathrm{D}}}(x, y) \leq p_{t}^{\mathcal{G}}(x, y)$;
- both $p_{t}^{\mathcal{G}}$ and $\frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial y^{2}} p_{t}^{\mathcal{G}}$ are jointly Lipschitz continuous, but $p_{t}^{\mathcal{G}}(\cdot, y)$ is not continuously differentiable for any y unless \mathcal{G} is a loop or a path.
C_{0}-semigroups

Definition

Let E be a normed space. A C_{0}-semigroup is a family $(T(t))_{t \geq 0}$ of bounded linear operators on E such that

- $T(0)=I d$
- $T(t+s)=T(t) T(s)$
- $\lim _{t \rightarrow 0} T(t) f=f$ for all $f \in E$.

Example

$T(t) f(\cdot)=f(t+\cdot)$ is a C_{0} semigroup on $E=L^{p}(\mathbb{R})$ for any $p \in[1, \infty)$ (but not for $p=\infty$: Exercise).

Example

$T(t) f(\cdot)=\mathrm{e}^{t q(\cdot)} f(\cdot)$ is a C_{0} semigroup on $E=L^{p}(\Omega)$ for any $p \in[1, \infty)$ and any $q \in L^{\infty}(X)$.

Generators

Definition

An operator A on E is said to be a generator of a C_{0}-semigroup $(T(t))_{t \geq 0}$ on E if

$$
\begin{aligned}
D(A) & =\left\{f \in E: \exists \lim _{t \geq 0+} \frac{T(t) f-f}{t}\right\} \\
A f & =\lim _{t \geq 0+} \frac{T(t) f-f}{t} .
\end{aligned}
$$

Example

$T(t) f(\cdot)=f(t+\cdot)$ on $L^{p}(\mathbb{R})$ is generated by

$$
\begin{aligned}
D(A) & =W^{1, p}(\mathbb{R}) \\
A f & =f^{\prime} .
\end{aligned}
$$

Example

$T(t) f(\cdot)=\mathrm{e}^{t q(\cdot)} f(\cdot)$ on $L^{p}(\Omega), \Omega \subset \mathbb{R}^{d}$ is generated by

$$
\begin{aligned}
D(A) & =L^{p}(\Omega) \\
A f & =q f .
\end{aligned}
$$

Recall:
$p=p_{t}(x, y):(0, \infty) \times X \times X \rightarrow \mathbb{C}$ is the heat kernel associated with A if $\forall t>0$, $\forall x, y \in X$
(1) $p_{t}(x, \cdot) f(\cdot) \in L^{1}(X)$ for all $f \in L^{p}(X)$
((1) $t \mapsto p_{t}(\cdot, y) \in C^{1}\left((0, \infty) ; L^{p}(X)\right) \cap C\left((0, \infty) ; D\left(A_{x}\right)\right)$
(1) $\frac{\partial}{\partial t} p_{t}(\cdot, y)=A_{x} p_{t}(\cdot, y)$
(0) $p_{t+s}(x, y)=\int_{X} p_{t}(x, z) p_{s}(z, y) \mathrm{d} \mu(z)$
(0) $\lim _{t \rightarrow 0^{+}} \int_{X} p_{t}(\cdot, y) f(y) \mathrm{d} \mu(y)=f(\cdot)$ (in $\left.L^{p}(X)\right)$ for all $f \in L^{p}(X)$

Example

If there is a heat kernel p associated with A, then A generates on $E=L^{2}(X ; \mu)$ a C_{0}-semigroup given by

$$
T(t) f=\int_{X} p_{t}(\cdot, y) f(y) \mathrm{d} \mu(y), \quad t \geq 0
$$

Proposition

For a generator A of a C_{0}-semigroup $(T(t))_{t \geq 0}$ on E the following hold:

- A is linear;
- if $f \in D(A)$, then $T(t) f \in D(A)$ and $\frac{\mathrm{d}}{\mathrm{d} t} T(t) f=T(t) A f=A T(t) f$ for all $t \geq 0$;
- A is closed and densely defined;
- $(T(t))_{t \geq 0}$ determines its generator uniquely, and vice versa.

Proof.

Exercise

The C_{0}-semigroup generated by A is denoted by $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$.

Analytic semigroups

Definition

A C C_{0}-semigroup $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$ on a Banach space E is called analytic if

$$
\left\|t A e^{t A} f\right\| \leq c\|f\|
$$

for some $c>0$ and all $t \in(0,1]$ and $f \in D(A)$.

In particular,

$$
\left\|A e^{t A} f\right\| \leq c(t)\|f\|
$$

i.e., $\mathrm{e}^{t A}$ is bounded from E to $D(A)$, hence (Exercise) from E to $\bigcap_{k \in \mathbb{N}} D\left(A^{k}\right)$, for all $t>0$.

Example

- $T(t) f(\cdot)=\mathrm{e}^{t q(\cdot) f(\cdot)}$ is analytic, for any $q \in L^{\infty}(\Omega)$;
- $T(t) f(\cdot)=f(t+\cdot)$ is NOT analytic.

Remark

A C_{0}-semigroup ($\left.\mathrm{e}^{t \Delta^{\mathcal{G}}}\right)_{t \geq 0}$ is analytic if and only if for some $\theta \in(0, \pi)$ it has an analytic extension $\left(\mathrm{e}^{t \Delta^{\mathcal{G}}}\right)_{t \in \Sigma_{\theta}}$ that is bounded on $\Sigma_{\theta} \cap\{z \in \mathbb{C}:|z| \leq 1\}$, where

$$
\Sigma_{\theta}:=\left\{r \mathrm{e}^{i \alpha}: r>0,|\alpha|<\theta\right\}
$$

Any closed quadratic form \mathfrak{A} on $L^{2}(X)$ is associated with a unique self-adjoint, positive semi-definite operator A on $L^{2}(X)$, and vice versa: there holds

$$
\begin{aligned}
D(A) & =\left\{f \in D(\mathfrak{A}): \exists g \in L^{2}(X) \text { s.t. } \mathfrak{a}(f, h)=(g, h) \forall h \in D(\mathfrak{a})\right\} \\
A f & =-g
\end{aligned}
$$

where \mathfrak{a} is the bilinear form corresponding with \mathfrak{A}, i.e., $\mathfrak{A}(f)=\frac{1}{2} \mathfrak{a}(f, f)$. Furthermore, A has compact resolvent iff $D(\mathfrak{A})$ is compactly embedded in $L^{2}(X ; \mu)$.

Self-adjoint operators and the Spectral Theorem

Let A be a self-adjoint, negative semidefinite operator on $L^{2}(X ; \mu)$ with compact resolvent.
Then

- $L^{2}(X ; \mu)$ has an ONB of eigenvectors of $A:\left(-\lambda_{k}, \varphi_{k}\right)_{k \in \mathbb{N}}$;
- A can be diagonalized:

$$
\begin{aligned}
D(A) & =\left\{f \in L^{2}(X ; \mu): \sum_{k \in \mathbb{N}} \lambda_{k}^{2}\left(f, \varphi_{k}\right)^{2}<\infty\right\}, \\
A f & =-\sum_{k \in \mathbb{N}} \lambda_{k}\left(f, \varphi_{k}\right) \varphi_{k}
\end{aligned}
$$

- A is associated with a closed quadratic form \mathfrak{A} given by

$$
\begin{aligned}
D(\mathfrak{a}) & =\left\{f \in L^{2}(X ; \mu): \sum_{k \in \mathbb{N}} \lambda_{k}\left(f, \varphi_{k}\right)^{2}<\infty\right\} \\
\mathfrak{a}(f, g) & =\sum_{k \in \mathbb{N}} \lambda_{k}\left(f, \varphi_{k}\right)\left(\varphi_{k}, g\right) .
\end{aligned}
$$

$!\lambda_{k} \geq 0$

Semigroups associatd with closed quadratic forms

Proposition

Every self-adjoint, negative semidefinite operator generates an analytic semigroup.

Proof.

For simplicity, only for operators with compact resolvent:

- By functional calculus, $\mathrm{e}^{t A}:=\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}}\left(f, \varphi_{k}\right) \varphi_{k}$ is a well-defined bounded linear operator on $L^{2}(X ; \mu)$;
- Given $f \in D(A)$ and $t>0$

$$
\left\|t A \mathrm{e}^{t A} f\right\|^{2}=\left\|t \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{e}^{t A} f\right\|^{2}=\sum_{k \in \mathbb{N}}\left|t \lambda_{k} \mathrm{e}^{-t \lambda_{k}}\left(f, \varphi_{k}\right)\right|^{2} \leq \frac{1}{\mathrm{e}}\|f\|^{2}
$$

(1) Heat equation and heat kernels
(2) Laplacians on metric graphs
(3) Spectral geometry

- Basic estimates in terms of total length
- Alternative estimates using different quantities
(4) Thermal geometry
(5) Nonlinear diffusion

Introducing metric graphs

Figure: Valentina Vetturi, Tails, 2023

Introducing metric graphs

Let

- $E=\left\{e_{1}, e_{2}, \ldots\right\}$ finite or countably infinite set ("edge set")
- $\ell: \mathrm{E} \rightarrow(0, \infty)$ ("edge lengths")
- \sim equivalence relation on $\mathcal{V}:=\bigsqcup_{\mathrm{e} \in \mathrm{E}}\left\{0, \ell_{\mathrm{e}}\right\}$ ("wiring")

Define $\mathcal{E}:=\bigsqcup_{\mathrm{e} \in \mathrm{E}}\left[0, \ell_{\mathrm{e}}\right]$ and extend canonically \sim to \mathcal{E}.
Then $\mathcal{G}:=\mathcal{E} / \sim$ is a metric graph and $\mathrm{V}:=\mathcal{V} / \sim$ its vertex set.

$\mathrm{G}:=(\mathrm{V}, \mathrm{E})$ is the underlying combinatorial graph of \mathcal{G}.
All topological features (number κ of connected components, Betti number $\beta:=\# \mathrm{E}-\# \mathrm{~V}+\kappa$, etc.) are determined by \sim.

The metric measure structure of \mathcal{G} does not change upon insertion of artificial, degree-2 vertices.

Inserting degree-2 vertices defines an equivalence relation. We will not distinguish between a metric graph and any of its representatives.

The metric measure structure of \mathcal{G} does not change upon insertion of artificial, degree- 2 vertices.

Inserting degree-2 vertices defines an equivalence relation. We will not distinguish between a metric graph and any of its representatives.

A metric graph does not have an intrinsic notion of boundary ${ }^{1}$, but each of its subgraphs does.

[^0]Goal: define a Laplacian on \mathcal{G} by means of a quadratic function on $L^{2}(\mathcal{G})$. Idea: integrate $-\Delta^{\mathcal{G}} f \in L^{2}(\mathcal{G})$ against a test function $h \in C(\mathcal{G}) \cap L^{2}(\mathcal{G})$.

$$
\begin{aligned}
\left(-\Delta^{\mathcal{G}} f, h\right) & =\int_{\mathcal{G}} f^{\prime \prime}(x) h(x) \mathrm{d} x \\
& =-\sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime \prime}(x) h_{\mathrm{e}}(x) \mathrm{d} x \\
& =-\left.\sum_{\mathrm{e} \in \mathrm{E}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}(x) \mathrm{d} x\right|_{x=0} ^{x=\ell_{\mathrm{e}}}+\sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}^{\prime}(x) \mathrm{d} x \\
& \stackrel{!}{=}-h(v) \sum_{\mathrm{e} \sim \mathrm{v}} \frac{\partial f_{\mathrm{e}}}{\partial n}(\mathrm{v})+\sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}^{\prime}(x) \mathrm{d} x \\
& \stackrel{?}{=} \sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}^{\prime}(x) \mathrm{d} x=a(f, h)
\end{aligned}
$$

Goal: define a Laplacian on \mathcal{G} by means of a quadratic function on $L^{2}(\mathcal{G})$. Idea: integrate $-\Delta^{\mathcal{G}} f \in L^{2}(\mathcal{G})$ against a test function $h \in C(\mathcal{G}) \cap L^{2}(\mathcal{G})$.

$$
\begin{aligned}
\left(-\Delta^{\mathcal{G}} f, h\right) & =-\int_{\mathcal{G}} f^{\prime \prime}(x) h(x) \mathrm{d} x \\
& =-\sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime \prime}(x) h_{\mathrm{e}}(x) \mathrm{d} x \\
& =-\left.\sum_{\mathrm{e} \in \mathrm{E}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}(x) \mathrm{d} x\right|_{x=0} ^{x=\ell_{\mathrm{e}}}+\sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}^{\prime}(x) \mathrm{d} x \\
& \stackrel{!}{=}-h(\mathrm{v}) \sum_{\mathrm{e} \sim \mathrm{v}} \frac{\partial f_{\mathrm{e}}}{\partial n}(\mathrm{v})+\sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}^{\prime}(x) \mathrm{d} x \\
& \stackrel{?}{=} \sum_{\mathrm{e} \in \mathrm{E}} \int_{0}^{\ell_{\mathrm{e}}} f_{\mathrm{e}}^{\prime}(x) h_{\mathrm{e}}^{\prime}(x) \mathrm{d} x=a(f, h)
\end{aligned}
$$

Consider

$$
H^{1}(\mathcal{G}):=\left\{f \in C(\mathcal{G}) \cap L^{2}(\mathcal{G}): f^{\prime} \in L^{2}(\mathcal{G})\right\}
$$

and

$$
D\left(\Delta^{\mathcal{G}}\right):=-\left\{f \in H^{1}(\mathcal{G}) \cap \bigoplus_{\mathrm{e} \in \mathrm{E}} H^{2}\left(0, \ell_{\mathrm{e}}\right): \sum_{\mathrm{e} \sim \mathrm{v}} \frac{\partial f_{\mathrm{e}}}{\partial n}(\mathrm{v})=0 \forall \mathrm{v} \in \mathrm{~V}\right\}
$$

Proposition (Pavlov-Faddeev 1983, Nicaise 1986)

$\Delta^{\mathcal{G}}$ is a self-adjoint operator on $L^{2}(\mathcal{G})$ with compact resolvent.

Proof.

- It suffices to prove that $\Delta^{\mathcal{G}}$ is associated with the closed quadratic form $\mathfrak{a}^{\mathcal{G}}(f, g):=\int_{\mathcal{G}} f^{\prime}(x) g^{\prime}(x) \mathrm{d} x$ with domain $D\left(\mathfrak{a}^{\mathcal{G}}\right):=H^{1}(\mathcal{G})$.
- Already proved: $\Delta^{\mathcal{G}} \subset A$. Exercise: prove $A \subset \Delta^{\mathcal{G}}$.
- $D\left(\mathfrak{a}^{\mathcal{G}}\right)=H^{1}(\mathcal{G}) \subset \bigoplus_{\mathrm{e} \in \mathrm{E}} H^{1}\left(0, \ell_{\mathrm{e}}\right) \stackrel{c}{\hookrightarrow} \bigoplus_{\mathrm{e} \in \mathrm{E}} L^{2}\left(0, \ell_{\mathrm{e}}\right)=L^{2}(\mathcal{G})$.

Remark

More generally, every bounded elliptic bilinear form \mathfrak{a} on $L^{2}(X ; \mu)$ is associated with an operator that generates an analytic semigroup on $L^{2}(X ; \mu)$; the generator is self-adjoint iff \mathfrak{a} is symmetric.

Useful information about heat kernel on metric graphs?

Hardly so. Explicit construction of the heat kernel of $\left(\mathrm{e}^{t \Delta^{\mathcal{G}}}\right)_{t \geq 0}$ actually available, via parametrix; however, the formula yields a hardly tractable series.

Proposition (Roth 1984; Becker-Gregorio-M. 2021)

$\Delta^{\mathcal{G}}$ is associated with a heat kernel $p^{\mathcal{G}}$ given by

$$
p_{t}^{\mathcal{G}}(x, y):=\frac{1}{\sqrt{4 \pi t}} \sum_{\gamma \in \mathcal{P}_{x, y}} \alpha(\gamma) \mathrm{e}^{-\frac{\text { length }(\gamma)^{2}}{4 t}}
$$

for appropriate "scattering coefficients" $\alpha(P) \in[-1,1]$.

Also already known:

$$
p_{t}^{\mathcal{G}}(x, y):=\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}^{\mathcal{G}}(x) \varphi_{k}^{\mathcal{G}}(y)
$$

(uniformly in $\mathcal{G} \times \mathcal{G}$, for all $t>0$).

Markovian property

Proposition (Kramar-M.-Sikolya 2007)

$\left(\mathrm{e}^{t \Delta^{\mathcal{G}}}\right)_{t \geq 0}$ is a Markovian semigroup; it satisfies a strict maximum principle if \mathcal{G} is connected.

Proof.

- Beurling-Deny 1959: If $A \sim \mathfrak{a}$, and $\mathfrak{a} \geq 0$, then $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$ is Markovian iff $f \in D(\mathfrak{a})$ implies $f \wedge \mathbf{1} \in D(\mathfrak{a})$ and $\mathfrak{a}\left(f \wedge \mathbf{1},(f-\mathbf{1})^{+}\right) \geq 0$.
- Ouhabaz 1996: If $A \sim \mathfrak{a}$, and if $\left(e^{t A}\right)_{t \geq 0}$ is positive, then $\left(e^{t A}\right)_{t \geq 0}$ satisfies the strict maximum principle iff for each measurable $\omega \subset X \mu(\omega)=0$ or $\mu(X \backslash \omega)=0$ whenever $\mathbf{1}_{\omega} f \in D(\mathfrak{a})$ for every $f \in D(\mathfrak{a})$.
- $f_{\mathrm{e}} \in H^{1}\left(0, \ell_{\mathrm{e}}\right)$ implies $f_{\mathrm{e}} \wedge \mathbf{1} \in H^{1}\left(0, \ell_{\mathrm{e}}\right)$ and

$$
\left.\left.\int_{0}^{\ell_{e}}\left(f_{e} \wedge \mathbf{1}\right)^{\prime}(x)\left(f_{e}-\mathbf{1}\right)^{+}\right)^{\prime}(x) \mathrm{d} x=\int_{\{f \leq 1\}}\left(f_{e} \wedge \mathbf{1}\right)^{\prime}(x)\left(f_{e}-\mathbf{1}\right)^{+}\right)^{\prime}(x) \mathrm{d} x=0 .
$$

- Also, $\mathbf{1}_{\omega_{e}} f \notin H^{1}\left(0, \ell_{e}\right) \hookrightarrow C\left[0, \ell_{\mathrm{e}}\right]$ unless $\omega_{\mathrm{e}}=\emptyset$ or $\omega_{\mathrm{e}}\left(0, \ell_{\mathrm{e}}\right)$.
- To conclude, observe that $f \in C(\mathcal{G})$ implies $f \wedge \mathbf{1} \in C(\mathcal{G})$.

Domination

A C_{0}-semigroup $(T(t))_{t \geq 0}$ on $L^{p}(X)$ is said to dominate another C_{0}-semigroup $(S(t))_{t \geq 0}$ if $|S(t) f| \leq T(t)|f|$ for all $f \in L^{P}(X)$ and all $t \geq 0$.

Proposition

Upon imposing Dirichlet conditions on $\mathrm{V}^{\mathrm{D}} \subset \mathrm{V}$ we obtain a new C_{0}-semigroup $\left(\mathrm{e}^{t \Delta^{\mathcal{G}} ; \mathrm{V}^{\mathrm{D}}}\right)_{t \geq 0}$ that is dominated by $\left(\mathrm{e}^{t \Delta^{\mathcal{G}}}\right)_{t \geq 0}$.

Exercise (Diamagnetic inequality for point interactions)

Same holds if magnetic vertex conditions

$$
u(\mathrm{v}+)=\mathrm{e}^{i \theta_{\mathrm{v}}} u(\mathrm{v}-)
$$

are imposed on finitely many vertices V^{m} of degree 2.

Given two subspaces U, V of $L^{2}(X ; \mu), U$ is a generalized ideal of V if

- $u \in U \Rightarrow|u| \in V$
- $u \in U, v \in V,|v| \leq|u| \Rightarrow v \operatorname{sgn} u \in U$.

Example

$H_{\text {antiper }}^{1}(0,1)$ is a generalized ideal of $H_{p e r}^{1}(0,1)$; neither of them is a generalized ideal of $H^{1}(0,1)$, but $H_{0}^{1}(0,1)$ is.

Proof

- Ouhabaz 1996 : Let $A \sim \mathfrak{a}, B \sim \mathfrak{b}, S \sim s$. If $\mathfrak{a}, \mathfrak{b}$ are both restrictions of \mathfrak{s}, and if $\left(\mathrm{e}^{t A}\right)_{t \geq 0},\left(\mathrm{e}^{t S}\right)_{t \geq 0}$ are both positive, then $\left(\mathrm{e}^{t A}\right)_{t \geq 0}$ dominates $\left(\mathrm{e}^{t B}\right)_{t \geq 0}$ iff $D(\mathfrak{b})$ is a generalized ideal of $D(\mathfrak{a})$.
- If Dirichlet conditions are imposed on $\mathrm{V}^{\mathrm{D}} \subset \mathrm{V}$, then the corresponding operator $\Delta^{\mathcal{G} ; V^{D}}$ is associated with the quadratic form

$$
\mathfrak{b}(f, g)=\mathfrak{a}(f, g), \quad f, g \in D(\mathfrak{b}):=H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)
$$

where $H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right):=\left\{f \in H^{1}(\mathcal{G}): f(\mathrm{v})=0 \forall \mathrm{v} \in \mathrm{V}^{\mathrm{D}}\right\}$.

- Let us check Ouhabaz' criterion: introduce

$$
\mathfrak{s}(f, g)=\int_{\mathcal{G}} f^{\prime}(x) g^{\prime}(x) \mathrm{d} x, \quad f, g \in D(\mathfrak{s}):=\bigoplus_{e \in E} H^{1}\left(0, \ell_{\mathrm{e}}\right)
$$

which satisfies the Beurling-Deny criterion.

- $H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)$ is a generalized ideal of $H^{1}(\mathcal{G}): f \in H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right) \Rightarrow|f| \in H^{1}(\mathcal{G})$; and $|g| \leq|f|$ with $f \in H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right) \Rightarrow g \operatorname{sgn} f \in H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)$.

Theorem (Kramar-M.-Sikolya 2007, M.-Romanelli 2007, Bifulco-M. 2023)

Given \mathcal{G} on finitely many edges of finite length, the Laplacian $\Delta_{\mathcal{G}}$ on \mathcal{G} is associated with a heat kernel $p^{\mathcal{G}}=p_{t}^{\mathcal{G}}(x, y)$ that satisfies.

- $0 \leq p_{t}^{\mathcal{G}}(x, y) \leq 1$ for all t and all $x, y \in \mathcal{G}$;
- if \mathcal{G} is connected, $0<p_{t}(x, y)$ for all t and all $x, y \in \mathcal{G}$;
- if Dirichlet conditions are imposed on a subset $\mathrm{V}^{\mathrm{D}} \subset \mathcal{G}, p_{t}^{\mathcal{G} ; \vee^{\mathrm{D}}}(x, y) \leq p_{t}^{\mathcal{G}}(x, y)$;
- both $p_{t}^{\mathcal{G}}$ and $\frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial y^{2}} p_{t}^{\mathcal{G}}$ are jointly Lipschitz continuous, but $p_{t}^{\mathcal{G}}(\cdot, y)$ is not continuously differentiable for any y unless \mathcal{G} is a loop or a path.

Smoothness of functions in $D\left(\Delta^{\mathcal{G}}\right)$

Lemma (M.-Plümer 2023)

$D\left(\Delta^{\mathcal{G}}\right)$ is continuously embedded in $\operatorname{Lip}(\mathcal{G})$.

Proof.

- $D\left(\Delta^{\mathcal{G}}\right) \hookrightarrow C(\mathcal{G}) \cap \bigoplus_{e \in E} H^{2}\left(0, \ell_{\mathrm{e}}\right) \hookrightarrow C(\mathcal{G}) \cap \bigoplus_{e \in E} W^{1, \infty}\left(0, \ell_{\mathrm{e}}\right)$.
- Let $u \in C(\mathcal{G}) \cap \bigoplus_{e \in E} W^{1, \infty}\left(0, \ell_{\mathrm{e}}\right)$. Let $x, y \in \mathcal{G}$ and let $\gamma \subset \mathcal{G}$ be a path connecting x and y. Then

$$
|u(x)-u(y)|=\left|\int_{\gamma} u^{\prime}(t) \mathrm{d} t\right| \leq \operatorname{length}(\gamma)\left\|u^{\prime}\right\|_{\infty} .
$$

- γ arbitrary \Rightarrow

$$
|u(x)-u(y)| \leq\left\|u^{\prime}\right\|_{\infty} d^{G}(x, y) .
$$

Therefore, $C(\mathcal{G}) \cap \bigoplus_{e \in E} W^{1, \infty}\left(0, \ell_{\mathrm{e}}\right) \hookrightarrow \operatorname{Lip}(\mathcal{G})$.

Theorem (Kramar-M.-Sikolya 2007, M.-Romanelli 2007, Bifulco-M. 2023)
Given \mathcal{G} on finitely many edges of finite length, the Laplacian $\Delta_{\mathcal{G}}$ on \mathcal{G} is associated with a heat kernel $p^{\mathcal{G}}=p_{t}^{\mathcal{G}}(x, y)$ that satisfies.

- $0 \leq p_{t}^{\mathcal{G}}(x, y) \leq 1$ for all t and all $x, y \in \mathcal{G}$;
- if \mathcal{G} is connected, $0<p_{t}(x, y)$ for all t and all $x, y \in \mathcal{G}$;
- if Dirichlet conditions are imposed on a subset $\mathrm{V}^{\mathrm{D}} \subset \mathcal{G}, p_{t}^{\mathcal{G} ; \mathrm{V}^{\mathrm{D}}}(x, y) \leq p_{t}^{\mathcal{G}}(x, y)$;
- both p_{t}^{G} and $\frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial y^{2}} p_{t}^{G}$ are jointly Lipschitz continuous, but $p_{t}^{G}(\cdot, y)$ is not continuously differentiable for any y unless \mathcal{G} is a loop or a path.

Proof - \#1

- Kantorovič-Wulich: Given $p \in[1, \infty)$, any operator in $\mathcal{L}\left(L^{p}(X) ; L^{\infty}(X)\right)$ has an integral kernel of class $L^{\infty}\left(X ; L^{p^{\prime}}(X)\right)$, and vice versa.

Leonid Vital'evič Kantorovič 1912-1986

Boris Sacharowitsch Wulich 1913-1978

Proof - \#1

- Kantorovič-Wulich: Given $p \in[1, \infty)$, any operator in $\mathcal{L}\left(L^{p}(X) ; L^{\infty}(X)\right)$ has an integral kernel of class $L^{\infty}\left(X ; L^{p^{\prime}}(X)\right)$, and vice versa.

Leonid Vital'evič Kantorovič 1912-1986

Boris Sacharowitsch Wulich 1913-1978

- $D\left(\Delta^{\mathcal{G}}\right) \hookrightarrow \operatorname{Lip}(\mathcal{G}) \hookrightarrow L^{\infty}(\mathcal{G})$: Therefore, $\mathrm{e}^{t \Delta^{\mathcal{G}}}\left(L^{2}(\mathcal{G})\right) \subset L^{\infty}(\mathcal{G})$ and by duality $\mathrm{e}^{t \Delta^{\mathcal{G}}}\left(L^{1}(\mathcal{G})\right) \subset L^{2}(\mathcal{G})$: by the semigroup law $\mathrm{e}^{t \Delta^{\mathcal{G}}}\left(L^{1}(\mathcal{G})\right) \subset L^{\infty}(\mathcal{G})$, i.e., $\mathrm{e}^{t \Delta^{\mathcal{G}}}$ has a heat kernel $p_{t}^{\mathcal{G}} \in L^{\infty}(\mathcal{G} \times \mathcal{G})$, for all $t>0$.
- $p_{t}(\cdot, y) \in D\left(\Delta^{\mathcal{G}}\right)$ for all $t>0$, but functions in $D\left(\Delta^{\mathcal{G}}\right)$ are not differentiable at any vertex of degree ≥ 3.

Proof - \#2

- Let $t>0$ and $f \in L^{2}(\mathcal{G})$. Because (i) $D\left(\Delta^{\mathcal{G}}\right) \hookrightarrow \operatorname{Lip}(\mathcal{G})$ and (ii) $\mathrm{e}^{t \Delta^{\mathcal{G}}}$ is bounded from $L^{2}(X ; \mu)$ to $D\left(\Delta^{\mathcal{G}}\right)$

$$
\begin{aligned}
\left|\mathrm{e}^{t \Delta^{\mathcal{G}}} f(x)-\mathrm{e}^{t \Delta^{\mathcal{G}}} f\left(x^{\prime}\right)\right| & \leq C(t) d^{\mathcal{G}}\left(x, x^{\prime}\right)\left\|\mathrm{e}^{t \Delta^{\mathcal{G}}} f\right\|_{D\left(\Delta^{\mathcal{G}}\right)} \\
& \leq \frac{C(t)}{t \mathrm{e}} d^{\mathcal{G}}\left(x, x^{\prime}\right)\|f\|_{L^{2}(\mathcal{G})} \quad \forall x, x^{\prime} \in \mathcal{G}
\end{aligned}
$$

- Hence, for all $f \in L^{2}(\mathcal{G})$

$$
\begin{aligned}
\left|\left(f,\left(p_{t}(x, \cdot)-p_{t}\left(x^{\prime}, \cdot\right)\right)\right)\right| & =\left|\int_{\mathcal{G}} f(y)\left(p_{t}(x, y)-p_{t}\left(x^{\prime}, y\right)\right) \mathrm{d} y\right| \\
& =\left|\int_{X} f(y)\left(p_{t}(x, y)-p_{t}\left(x^{\prime}, y\right)\right) \mathrm{d} y\right| \\
& =\left|\mathrm{e}^{t \Delta^{\mathcal{G}}}\left(f(x)-f\left(x^{\prime}\right)\right)\right| \\
& \leq C^{\prime}(t) d^{\mathcal{G}}\left(x, x^{\prime}\right)\|f\|_{L^{2}(\mathcal{G})} .
\end{aligned}
$$

- We finally conclude that

$$
\begin{aligned}
\left\|p_{t}(x, \cdot)-p_{t}\left(x^{\prime}, \cdot\right)\right\|_{L^{2}(X ; \mu)} & =\sup _{\|f\|_{L^{2}=1}}\left|\left(f,\left(p_{t}(x, \cdot)-p_{t}\left(x^{\prime}, \cdot\right)\right)\right)\right| \\
& \leq C^{\prime}(t) d^{\mathcal{G}}\left(x, x^{\prime}\right)
\end{aligned}
$$

Proof - \#3

- By the semigroup law

$$
p_{t}(x, y)=\int_{\mathcal{G}} p_{\frac{t}{2}}(x, z) p_{\frac{t}{2}}(z, y) \mathrm{d} z
$$

whence for a.e. $y \in \mathcal{G}$

$$
\begin{aligned}
\left|p_{t}(x, y)-p_{t}\left(x^{\prime}, y\right)\right| & \leq C^{\prime}\left(\frac{t}{2}\right)\left\|p_{\frac{t}{2}}(\cdot, y)\right\|_{L^{2}(\mathcal{G})} d^{\mathcal{G}}\left(x, x^{\prime}\right) \\
& \leq C^{\prime \prime}\left(\frac{t}{2}\right)\left\|p_{\frac{t}{2}}\right\|_{L^{\infty}(\mathcal{G} \times \mathcal{G})} d^{\mathcal{G}}\left(x, x^{\prime}\right)
\end{aligned}
$$

i.e., $\mathcal{G} \ni x \mapsto p_{t}(x, \cdot) \in L^{\infty}(\mathcal{G})$ is Lipschitz.

- Finally,

$$
\begin{aligned}
\left|p_{t}(x, y)-p_{t}\left(x^{\prime}, y^{\prime}\right)\right|= & \left|\int_{X} p_{\frac{t}{2}}(x, z) p_{\frac{t}{2}}(z, y) \mathrm{d} z-\int_{X} p_{\frac{t}{2}}\left(x^{\prime}, z\right) p_{\frac{t}{2}}\left(z, y^{\prime}\right) \mathrm{d} z\right| \\
\leq & \left\|p_{\frac{t}{2}}(x, \cdot)\right\|_{L^{2}(\mathcal{G})}\left\|p_{\frac{t}{2}}(\cdot, y)-p_{\frac{t}{2}}\left(\cdot, y^{\prime}\right)\right\|_{L^{2}(\mathcal{G})} \\
& +\left\|p_{\frac{t}{2}}\left(\cdot, y^{\prime}\right)\right\|_{L^{2}(\mathcal{G})}\left\|p_{\frac{t}{2}}(x, \cdot)-p_{\frac{t}{2}}\left(x^{\prime}, \cdot\right)\right\|_{L^{2}(\mathcal{G})} \\
\leq & C^{\prime \prime \prime}\left(\frac{t}{2}\right)\left(d^{\mathcal{G}}\left(x, x^{\prime}\right)+d^{\mathcal{G}}\left(y, y^{\prime}\right)\right)
\end{aligned}
$$

- Likewise for $\frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial y^{2}} p_{t}^{\mathcal{G}}(\cdot, \cdot)$, using $p_{t}(\cdot, y) \in D\left(\Delta^{\mathcal{G}}\right)$ for a.e. $y \in \mathcal{G}$.

More general operators

Proposition

Everything we have seen is still valid if Δ is replaced by

$$
A_{c, V, \gamma} u:=\frac{\partial}{\partial x}\left(c(\cdot) \frac{\partial}{\partial x}\right)+V
$$

with " δ-interaction"

$$
\text { continuity }+\sum_{\mathrm{e} \sim \mathrm{v}} c_{e}(\mathrm{v}) \frac{\partial u_{\mathrm{e}}}{\partial n}(\mathrm{v})+\gamma(\mathrm{v}) u(\mathrm{v})=0
$$

for $c \in L^{\infty}(\mathcal{G}), \quad V \in L^{1}(\mathcal{G})$, and $(\gamma(v))_{v \in \mathrm{~V}}$.

Proof.

$A_{c, V, \gamma}$ is associated with

$$
\mathfrak{a}_{c, V, \gamma}^{\mathcal{G}}(f):=\int_{\mathcal{G}} a(x)\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x+\int_{\mathcal{G}} V(x)|f(x)|^{2} \mathrm{~d} x+\sum_{\mathrm{v} \in \mathrm{~V}} \gamma(\mathrm{v})|f(\mathrm{v})|^{2}
$$

with same form domain $D\left(\mathfrak{a}_{c, V, \gamma}^{\mathcal{G}}(f)\right)=D\left(\mathfrak{a}^{\mathcal{G}}\right)=H^{1}(\mathcal{G})$.
! Dirichlet conditions at a vertex can be obtained letting $\gamma(\bar{v}) \rightarrow+\infty$.

Lack of domination

Proposition

If $\mathcal{G}, \mathcal{G}^{\prime}$ any two different wirings over the same edge set, then $\mathrm{e}^{t \Delta^{\mathcal{G}}}$ does not dominate $\mathrm{e}^{t \Delta^{G^{\prime}}}$ for any $t>0$.

Proof.

$D\left(\mathfrak{a}^{\mathcal{G}}\right)$ is not a generalized ideal of $D\left(\mathfrak{a}^{\mathfrak{G}^{\prime}}\right)$ (Exercise)

Miscellaneous comments

- Kennedy-Lang 2020: Similar results also hold operators with $V \in L^{1}(\mathcal{G} ; \mathbb{C})$, $(\gamma(v))_{v \in V} \subset \mathbb{C}$. In particular, $\left|\mathrm{e}^{t A_{c, V}, \gamma}\right| \leq \mathrm{e}^{t A_{c, \operatorname{Re}} V, \operatorname{Re} \gamma}$
- Kurasov 2010, Berkolaiko-Weyand 2012, Egidi-M.-Seelmann 2023: One can also add a magnetic potential: somewhat trivial, because a gauge transformation makes Δ_{α} similar to Δ. A diamagnetic inequality holds:

$$
\left|\mathrm{e}^{t \Delta_{\alpha}}\right| \leq \mathrm{e}^{t \Delta} \quad \text { for all } t>0
$$

- Glück-M. 2021: If $\mathcal{G}, \mathcal{G}^{\prime}$ any two different wirings over the same edge set, then $\mathrm{e}^{t \Delta^{\mathcal{G}}}$ does not even eventually dominate $\mathrm{e}^{t \Delta^{\mathcal{G}^{\prime}}}$: there is no $t_{0}>0$ such that $\mathrm{e}^{t \Delta^{\mathcal{G}}} \leq \mathrm{e}^{t \Delta^{\mathcal{G}^{\prime}}}$ for all $t>t_{0}$.

Open question: Given two different wirings $\mathcal{G}, \mathcal{G}^{\prime}$, is there $M>0$ such that $\mathrm{e}^{t \Delta^{\mathcal{G}}} \leq M \mathrm{e}^{t \Delta^{\mathcal{G}^{\prime}}}$ for all $t>0$?

Long-time behavior

By resolvent compactness, $\Delta_{\mathcal{G}}$ has an ONB of eigenfunctions $\left(\varphi_{k}\right)$ with associated eigenvalues $-\lambda_{k}=-\lambda_{k}(\mathcal{G})^{2}$.

If \mathcal{G} is connected, then $\lambda_{0}=0$ (simple!) with $\varphi_{0}=\mathbf{1}_{\mathcal{G}}$.
Because $\mathrm{e}^{t \Delta^{\mathcal{G}}} f(\cdot)=\sum_{k=0}^{\infty} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(\cdot) \int_{\mathcal{G}} \varphi_{k}(x) f(x) \mathrm{d} x$,

$$
\begin{aligned}
\left\|\mathrm{e}^{t \Delta^{\mathcal{G}}} f-\int_{\mathcal{G}} \varphi_{0}(x) f(x) \mathrm{d} x\right\| & =\left\|\sum_{k=1}^{\infty} \mathrm{e}^{-t \lambda_{k}} \varphi_{k} \int_{\mathcal{G}} \varphi_{k}(x) f(x) \mathrm{d} x\right\| \\
& \leq \mathrm{e}^{-t \lambda_{1}}\|f\|
\end{aligned}
$$

Estimating λ_{1} is crucial to study the long-time behaviour!

[^1]The Laplacian on metric graphs and their underlying combinatorial graphs
Given \mathcal{G}, consider the underlying combinatorial graph G, its degree matrix \mathcal{D}^{G} and its discrete Laplacian \mathcal{L}^{G}.

Proposition (von Below 1985)

If all $\ell_{\mathrm{e}} \equiv \ell$, TFAE:

- λ is eigenvalue of $-\Delta^{\mathcal{G}}$
- $\alpha:=\cos \sqrt{\lambda}$ is eigenvalue of $\operatorname{Id}-\mathcal{D}^{G-\frac{1}{2}} \mathcal{L}^{G} \mathcal{D}^{G-\frac{1}{2}}$

(1) Heat equation and heat kernels
(2) Laplacians on metric graphs
(3) Spectral geometry
- Basic estimates in terms of total length
- Alternative estimates using different quantities
(4) Thermal geometry
(5) Nonlinear diffusion

Nicaise' Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph \mathcal{G} on finitely many edges of finite length $\lambda_{1}(\mathcal{G}) \geq \frac{\pi^{2}}{|\mathcal{G}|^{2}}$, with equality if $\mathcal{G}=$

Exercise (Nicaise 1987)

Prove the estimate $\lambda_{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right) \geq \frac{\pi^{2}}{4|\mathcal{G}|^{2}}$ if $\mathrm{V}^{\mathrm{D}} \neq \emptyset$, with equality iff $\mathcal{G}=0$

Nicaise' Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph \mathcal{G} on finitely many edges of finite length $\lambda_{1}(\mathcal{G}) \geq \frac{\pi^{2}}{|\mathcal{G}|^{2}}$, with equality if $\mathcal{G}=$

Theorem (Friedlander 2005)

Nicaise' Inequality is sharp. Indeed

$$
\lambda_{j}\left(\Delta_{\mathcal{G}}\right) \geq \frac{\pi^{2}(j+1)^{2}}{4|\mathcal{G}|^{2}} \quad \text { for all } j \in \mathbb{N}
$$

with equality if (and only if!) \mathcal{G} is a metric star on $j+1$ edges of same length.

Exercise (Nicaise 1987)

Prove the estimate $\lambda_{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right) \geq \frac{\pi^{2}}{4|\mathcal{G}|^{2}}$ if $\mathrm{V}^{\mathrm{D}} \neq \emptyset$, with equality iff $\mathcal{G}=$

Proof of Nicaise' Inequality - Kurasov-Naboko's version

- Produce $\mathcal{G}_{(2)}$ by replacing each edge e in \mathcal{G} by two identical copies of e: then $\left|\mathcal{G}_{(2)}\right|=2|\mathcal{G}|$.
- Take $\left(\lambda_{1}, \varphi_{1}\right)$ and clone φ_{1} to produce an admissibile test function $\varphi_{1}^{(2)}$ for $\lambda_{1}\left(\mathcal{G}_{(2)}\right)$: observe that $\varphi_{1}^{(2)} \perp \mathbf{1}_{\mathcal{G}_{(2)}}$.
- Also, $\left\|\varphi_{1}^{(2)}\right\|_{L^{2}}^{2}=2\left\|\varphi_{1}\right\|_{L^{2}}^{2},\left\|\varphi_{1}^{(2)^{\prime}}\right\|_{L^{2}}^{2}=2\left\|\varphi_{1}^{\prime}\right\|_{L^{2}}^{2}$: hence
$\lambda_{1}(\mathcal{G})=\frac{\left\|\varphi_{1}^{\prime}\right\|_{2^{2}}^{2}}{\left\|\varphi_{1}\right\|_{L^{2}}^{2}} \geq \min _{f \in H^{1}\left(\mathcal{G}_{(2)}\right)} \frac{\left\|f^{\prime}\right\|_{L^{2}}^{2}}{\|f\|_{L^{2}}^{2}}=\lambda_{1}\left(\mathcal{G}_{(2)}\right)$.
$f \perp \mathbf{1}_{\mathcal{G}_{(2)}}$
- Cut through all vertices to turn $\mathcal{G}_{(2)}$ into a cycle \mathcal{C} : this is possible because each vertex in $\mathcal{G}_{(2)}$ has even degree, so $\mathcal{G}_{(2)}$ contains a Eulerian cycle: $\lambda_{1}\left(\mathcal{G}_{(2)} \geq \lambda_{1}(\mathcal{C})\right.$.
- However, $\lambda_{1}(\mathcal{C})=\frac{4 \pi^{2}}{|\mathcal{C}|^{2}}=\frac{\pi^{2}}{|\mathcal{G}|^{2}}$.

Selected surgery principles

Proposition (Kennedy-Kurasov-Malenová-M. 2016)

Given \mathcal{G} with finitely many edges of finite length, produce \mathcal{G}^{\prime} by
(a) cutting through a vertex v to create two new vertices $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathcal{G}$, or
(2) attaching a pendant graph \mathcal{H} at a vertex $v \in \mathcal{G}$.

Then $\lambda_{k}(\mathcal{G}) \geq \lambda_{k}\left(\mathcal{G}^{\prime}\right)$.
Furthermore, $\lambda_{1}(\mathcal{G})=\lambda_{1}(\mathcal{C})$ if
(3) \mathcal{G} is a figure- 8 graph and \mathcal{C} is a cycle graph with $|\mathcal{G}|=|\mathcal{C}|$.

Proof.

(1) $H^{1}(\mathcal{G}) \supset H^{1}\left(\mathcal{G}^{\prime}\right)$
(2) Take (λ_{1}, φ_{1}) and extend φ_{1} by continuity to a function that is constant on \mathcal{H}. Then $\varphi_{1} \mathbf{1}_{\mathcal{G}}-|\mathcal{H}| \mathbf{1}_{\mathcal{H}}$ is orthogonal to $\mathbf{1}_{\mathcal{G}^{\prime}}$, hence an admissible test function for $\lambda_{1}\left(\mathcal{G}^{\prime}\right)$.
(3) Construct \mathcal{C} from \mathcal{G} by cutting through the (only) vertex v , thus creating $\mathrm{v}_{1}, \mathrm{v}_{2}$. By (1), $\lambda_{1}(\mathcal{C}) \leq \lambda_{1}(\mathcal{G})$.

Pick a ground state ψ_{1} on \mathcal{C} : up to rotation, wlog $\psi_{1}\left(\mathrm{v}_{1}\right)=\psi_{1}\left(\mathrm{v}_{2}\right)$: thus, $\psi_{1} \in H^{1}(\mathcal{G})$ is an admissible test function on \mathcal{G}, hence $\lambda_{1}(\mathcal{G}) \leq \lambda_{1}(\mathcal{C})$.

An upper estimate

Theorem (Kennedy-Kurasov-Malenová-M. 2016)

For any metric graph \mathcal{G} on $E \geq 2$ edges of finite length

$$
\lambda_{1}(\mathcal{G}) \leq \frac{\pi^{2} E^{2}}{|\mathcal{G}|^{2}} .
$$

Equality holds for equilateral stars and equilateral pumpkin graphs...
M.-Pivovarchik 2022: ...and for an infinite class of metric graphs ("inflated stars", after Butler-Grout 2011).

Proof

- Glue all vertices to produce a new metric graph \mathcal{G}^{\prime} (a "metric flower"): then $\lambda_{1}(\mathcal{G}) \leq \lambda_{1}\left(\mathcal{G}^{\prime}\right)$.
- Produce a figure-8 graph $\mathcal{G}^{\prime \prime}$ by plucking all petals of the metric flower but the two longest ones: then $\lambda_{j}\left(\mathcal{G}^{\prime}\right) \leq \lambda_{j}\left(\mathcal{G}^{\prime \prime}\right)$ for all j.
- $\lambda_{1}\left(\mathcal{G}^{\prime \prime}\right)=\lambda_{1}\left(\right.$ Cycle of same total length as $\left.\mathcal{G}^{\prime}\right)=\frac{4 \pi^{2}}{\left|\mathcal{G}^{\prime \prime}\right|^{2}}$ (easy proof using symmetry).
- However, by the pigeonhole principle $\left|\mathcal{G}^{\prime \prime}\right| \geq 2 \frac{|\mathcal{G}|}{E}$.

Weyl asymptotics
Recall:

$$
\lambda_{j}\left(\Delta_{\mathcal{G}}\right) \geq \frac{\pi^{2}(j+1)^{2}}{4|\mathcal{G}|^{2}} \quad \text { for all } j \in \mathbb{N},
$$

Proposition

Given \mathcal{G} on $E<\infty$ edges of finite length,

$$
\lambda_{j}(\mathcal{G}) \leq \frac{E^{2} \pi^{2}(j+1)^{2}}{|\mathcal{G}|^{2}}
$$

Proof.

Corollary (Nicaise 1987)

$$
\frac{\lambda_{j}(\mathcal{G})}{j^{2}} \approx \frac{\pi^{2}}{|\mathcal{G}|^{2}}
$$

Weyl asymptotics
Recall:

$$
\lambda_{j}\left(\Delta_{\mathcal{G}}\right) \geq \frac{\pi^{2}(j+1)^{2}}{4|\mathcal{G}|^{2}} \quad \text { for all } j \in \mathbb{N},
$$

Proposition

Given \mathcal{G} on $E<\infty$ edges of finite length,

$$
\lambda_{j}(\mathcal{G}) \leq \frac{E^{2} \pi^{2}(j+1)^{2}}{|\mathcal{G}|^{2}}
$$

Proof.

Repeat the previous proof and, in the last step, observe that
$\lambda_{j}\left(\mathcal{G}^{\prime \prime}\right) \leq \lambda_{j+1}\left(\right.$ Cycle of same total length as $\left.\mathcal{G}^{\prime}\right) \leq \frac{(j+1)^{2} \pi^{2}}{\left|\mathcal{G}^{\prime \prime}\right|^{2}}$ (again by symmetry).

Corollary (Nicaise 1987)

$$
\frac{\lambda_{j}(\mathcal{G})}{j^{2}} \approx \frac{\pi^{2}}{|\mathcal{G}|^{2}}
$$

Eigenvalue estimates with Dirichlet vertex conditions

Proposition (Plümer 2022)

If \mathcal{G} is a graph with finitely many edges of finite length, then

$$
\lambda_{1}\left(\mathcal{G} ; V^{\mathrm{D}}\right) \geq \frac{1}{|\mathcal{G}| \operatorname{lnr}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)}
$$

where $\operatorname{Inr}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right):=\sup _{x \in \mathcal{G}} d\left(x, \mathrm{~V}^{\mathrm{D}}\right)$.

Proof.

Let $f \in H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right), x \in \mathcal{G}, \mathrm{v} \in \mathrm{V}^{\mathrm{D}}, \gamma$ a geodesic between x, v. Then

$$
f(x)=f(x)-f(v)=\int_{\gamma} f^{\prime}(y) \mathrm{d} y
$$

and

$$
|f(x)|^{2} \leq L(\gamma) \int_{\gamma}\left|f^{\prime}(y)\right|^{2} \mathrm{~d} y \leq d\left(x, \mathrm{~V}^{\mathrm{D}}\right)\left\|f^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2} .
$$

Therefore,

$$
\begin{aligned}
\|f\|_{L^{2}(\mathcal{G})}^{2} \leq \int_{\mathcal{G}} d\left(x, \mathrm{~V}^{\mathrm{D}}\right) \mathrm{d} x\left\|f^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2} & =|\mathcal{G}| f_{\mathcal{G}} d\left(x, \mathrm{~V}^{\mathrm{D}}\right) \mathrm{d} x\left\|f^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2} \\
& \leq|\mathcal{G}| \operatorname{Inr}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)\left\|f^{\prime}\right\|_{L^{2}(\mathcal{G})}^{2} .
\end{aligned}
$$

Lower estimate by diameter and nodal counting

Corollary

If \mathcal{G} is a graph with finitely many edges of finite length, then

$$
\lambda_{k}(\mathcal{G}) \geq \frac{\nu_{k}}{|\mathcal{G}| \operatorname{Diam}(\mathcal{G})},
$$

where ν_{k} is \# of nodal domains $\mathcal{G}_{1}, \ldots, \mathcal{G}_{k}$ of ψ_{k}; in particular,

$$
\lambda_{1}(\mathcal{G}) \geq \frac{2}{|\mathcal{G}| \operatorname{Diam}(\mathcal{G})} .
$$

Proof.
 $\lambda_{k}(\mathcal{G})=\lambda_{1}\left(\mathcal{G}_{i} ; \partial \mathcal{G}_{i}\right)$, hence

$$
\lambda_{k}(\mathcal{G}) \geq \frac{1}{\left|\mathcal{G}_{j}\right| \operatorname{Inr}\left(\mathcal{G}_{j} ; \partial \mathcal{G}_{j}\right)} .
$$

By the pidgeonhole principle, there is j with $\left|\mathcal{G}_{j}\right| \leq \frac{|\mathcal{G}|}{\nu_{k}}$.

Lower estimate by mean distance

Corollary (Baptista-Kennedy-M. 2023)

If \mathcal{G} is a graph with finitely many edges of finite length, then

$$
\lambda_{1}(\mathcal{G}) \geq \frac{1}{|\mathcal{G}| f_{\mathcal{G} \times \mathcal{G}} d(x, y) \mathrm{d} x \mathrm{~d} y} .
$$

Proof.

- Pick $x_{0} \in \mathcal{G}$ with $f_{\mathcal{G}} d\left(x_{0}, y\right) \mathrm{d} y=f_{\mathcal{G} \times \mathcal{G}} d(x, y) \mathrm{d} x \mathrm{~d} y$.
- Use Plümer's estimate to deduce (for $\mathrm{V}^{\mathrm{D}}:=\left\{x_{0}\right\}$)

$$
1 \leq \lambda_{1}\left(\mathcal{G} ;\left\{x_{0}\right\}\right)|\mathcal{G}| f_{\mathcal{G} \times \mathcal{G}} d(x, y) \mathrm{d} x \mathrm{~d} y
$$

- Consider the nodal domains $\mathcal{G}_{ \pm}$of $\Delta^{\mathcal{G}}$, assume wlog that $x_{0} \in \mathcal{G}_{+}$and deduce from domain monotonicity of the Dirichlet eigenvalues that

$$
\lambda_{1}(\mathcal{G})=\lambda_{1}\left(\mathcal{G}_{+} ; \partial \mathcal{G}_{+}\right) \geq \lambda_{1}\left(\mathcal{G} ;\left\{x_{0}\right\}\right)
$$

Lower estimate by avoidance diameter

The avoidance diameter of \mathcal{G} is

$$
\operatorname{avoid}(\mathcal{G}):=\max _{\gamma} \min _{x \in \mathbb{S}^{1}} d(\gamma(-x), \gamma(x))
$$

where max is taken over all injective con-

\mathcal{G}	$\operatorname{avoid}(\mathcal{G})$
trees	0
equilateral figure-8 graph	$\frac{L}{4}$
equilateral flower graph on k edges	$\frac{L}{2 k}$
equilateral pumpkin graph on k edges	$\frac{L}{k}$

Lower estimate by avoidance diameter

The avoidance diameter of \mathcal{G} is

$$
\operatorname{avoid}(\mathcal{G}):=\max _{\gamma} \min _{x \in \mathbb{S}^{1}} d(\gamma(-x), \gamma(x))
$$

where max is taken over all injective con-

\mathcal{G}	$\operatorname{avoid}(\mathcal{G})$
trees	0
equilateral figure-8 graph	$\frac{L}{4}$
equilateral flower graph on k edges	$\frac{L}{2 k}$
equilateral pumpkin graph on k edges	$\frac{L}{k}$

Proposition (Berkolaiko-Kennedy-Kurasov-M. 2023:)

$$
\lambda_{1}(\mathcal{G})<\frac{6|\mathcal{G}|}{\operatorname{avoid}(\mathcal{G})^{3}}
$$

A homotopy lemma

Lemma

Let \mathfrak{A} be closed quadratic form with $\operatorname{dom}(\mathfrak{A}) \stackrel{c}{\hookrightarrow} L^{2}(X ; \mu)$. Assume the associated operator A on $L^{2}(X ; \mu)$ to have one-dimensional null space spanned by some u. If

- $\psi::[0,1] \rightarrow D(a) \backslash\{0\}$ satisfies $\psi_{0}=-\psi_{1}$ and
- $[0,1] \ni t \mapsto\left(\psi_{t}, u\right) \in \mathbb{R}$ is continuous
then the second lowest eigenvalue $\lambda_{1}(A)$ of A satisfies

$$
\lambda_{1}(A) \leq \frac{\mathfrak{A}\left(\psi_{t_{0}}\right)}{\left\|\psi_{t_{0}}\right\|_{L^{2}}^{2}} \quad \text { for some } t_{0} \in(0,1) .
$$

In our relevant case: $\mathfrak{A}(f)=\int_{\mathcal{G}}\left|f^{\prime}\right|^{2} \mathrm{~d} x, u \equiv 1$.

A homotopy lemma

Lemma

Let \mathfrak{A} be closed quadratic form with $\operatorname{dom}(\mathfrak{A}) \stackrel{c}{\hookrightarrow} L^{2}(X ; \mu)$. Assume the associated operator A on $L^{2}(X ; \mu)$ to have one-dimensional null space spanned by some u. If

- $\psi::[0,1] \rightarrow D(a) \backslash\{0\}$ satisfies $\psi_{0}=-\psi_{1}$ and
- $[0,1] \ni t \mapsto\left(\psi_{t}, u\right) \in \mathbb{R}$ is continuous
then the second lowest eigenvalue $\lambda_{1}(A)$ of A satisfies

$$
\lambda_{1}(A) \leq \frac{\mathfrak{A}\left(\psi_{t_{0}}\right)}{\left\|\psi_{t_{0}}\right\|_{L^{2}}^{2}} \quad \text { for some } t_{0} \in(0,1) .
$$

In our relevant case: $\mathfrak{A}(f)=\int_{\mathcal{G}}\left|f^{\prime}\right|^{2} \mathrm{~d} x, u \equiv 1$.

Proof.

Because $\left(\psi_{0}, u\right)=-\left(\psi_{1}, u\right)$, there is t_{0} with $\left(\psi_{t_{0}}, u\right)=0$. Now, use $\psi_{t_{0}}$ as a test function in the Rayleigh quotient.

Sketch of the proof

Apply the homotopy lemma to

$$
\psi_{t}:=\tau_{\gamma\left(\mathrm{e}^{i \pi t}\right), \frac{1}{2} \operatorname{avoid}(\mathcal{G})}-\tau_{\gamma\left(-\mathrm{e}^{i \pi t}\right), \frac{1}{2} \operatorname{avoid}(\mathcal{G})}, \quad t \in[0,2 \pi)
$$

where γ is the curve realizing the avoidance diameter and

$$
\tau_{x, d}(y):= \begin{cases}d-d(x, y), & \text { if } d(x, y) \leq d \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\lambda_{1}(\mathcal{G}) \leq \max _{t \in[0,1]} \frac{|\mathcal{G}|}{2\left\|\tau_{\gamma\left(\mathrm{e}^{i \pi t}\right), \operatorname{avoid}(\mathcal{G})}\right\|^{2}} \leq \frac{6|\mathcal{G}|}{\operatorname{avoid}(\mathcal{G})^{3}}
$$

(1) Heat equation and heat kernels
(2) Laplacians on metric graphs
(3) Spectral geometry

- Basic estimates in terms of total length
- Alternative estimates using different quantities
(4) Thermal geometry
(5) Nonlinear diffusion

Shape optimization wrt heat kernel?

Already seen:
If $\mathcal{G}, \mathcal{G}^{\prime}$ are two different wirings over the same edge set,

$$
p_{t}^{\mathcal{G}}(x, y) \leq p_{t}^{\mathcal{G}^{\prime}}(x, y) \quad \forall x, y \in \mathcal{G}
$$

for all $t \geq 0$ is impossible.
Idea: Consider the overall insulation wrt V^{D}

$$
\int_{0}^{\infty} \int_{\mathcal{G}} \int_{\mathcal{G}} p_{t}^{\mathcal{G} ; \gamma^{\mathrm{D}}}(x, y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} t
$$

Remark

- Because $p_{t}^{\mathcal{G}} \geq 0$, so is $\int_{0}^{\infty} \int_{\mathcal{G}} \int_{\mathcal{G}} p_{t}^{\mathcal{G}}(x, y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} t$.
- The Green function $G^{\mathcal{G} ; V^{\mathrm{D}}}$ is the Laplace transform of $p^{\mathcal{G} ; V^{\mathrm{D}}}$ (Exercise).
- If $\mathrm{V}^{\mathrm{D}}=\emptyset$, the overall insulation is always $=\infty$, because $\int_{\mathcal{G}} \int_{\mathcal{G}} p_{t}^{\mathcal{G} ; \mathrm{V}^{\mathrm{D}}}(x, y) \mathrm{d} x \mathrm{~d} y=|\mathcal{G}|$ (Exercise).

Path graphs maximize insulation

Theorem

$$
\frac{1}{12} \frac{|\mathcal{G}|^{3}}{|\mathrm{E}|^{3}} \leq \int_{0}^{\infty} \int_{\mathcal{G}} \int_{\mathcal{G}} p_{t}^{\mathcal{G}}(x, y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} t \leq \frac{1}{3}|\mathcal{G}|^{3}
$$

Lower estimate is an equality iff $\mathcal{G}=$

Upper estimate is an equality iff $\mathcal{G}=$

Proof (upper estimate)

- $\int_{0}^{\infty} p_{t}^{\mathcal{G}}(x, y) \mathrm{d} t$ is the Green's function of \mathcal{G}, i.e., the integral kernel of Δ^{-1}.
- Thus, $\int_{0}^{\infty} \int_{\mathcal{G}} \int_{\mathcal{G}} p_{t}^{\mathcal{G}}(x, y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} t=-\int_{\mathcal{G}} \Delta^{-1} \mathbb{1}(x) \mathrm{d} x$
- Describe the integrated heat content in variational terms, following Pólya:

$$
-\int_{\mathcal{G}}\left(\Delta^{\mathcal{G} ; \mathrm{V}^{\mathrm{D}}}\right)^{-1} \mathbb{1}(x) \mathrm{d} x=\max _{u \in H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)} \frac{\|u\|_{L^{1}}^{2}}{\left\|u^{\prime}\right\|_{L^{2}}^{2}}
$$

because the Euler-Lagrange equation for

$$
-\Delta^{\mathcal{G} ; V^{\mathrm{D}}} u=\mathbb{1}
$$

is

$$
\frac{1}{2} \int_{\mathcal{G}} u^{\prime}(x) h^{\prime}(x) \mathrm{d} x=\int_{\mathcal{G}} h(x) \mathrm{d} x, \quad h \in H_{0}^{1}\left(\mathcal{G} ; \mathrm{V}^{\mathrm{D}}\right)
$$

- Mimic Nicaise' doubling trick.

Proof (lower estimate)

- Use again $\int_{0}^{\infty} \int_{\mathcal{G}} \int_{\mathcal{G}} p_{t}^{\mathcal{G}}(x, y) \mathrm{d} x \mathrm{~d} y \mathrm{~d} t=\max _{u \in H_{0}^{1}(\mathcal{G} ; \mathrm{vD})} \frac{\|u\|_{L^{1}}^{2}}{\left\|u^{\prime}\right\|_{L^{2}}^{2}}$
- Consider, as a test function, the function u^{*} that satisfies $-u^{* \prime \prime}=\mathbb{1}$ with Dirichlet conditions on each edge.
- Check that

$$
\frac{\left\|u_{\mathrm{e}}^{*}\right\|_{L^{1}}^{2}}{\left\|u_{\mathrm{e}}^{*}\right\|_{L^{2}}^{2}}=\frac{|\mathrm{e}|^{3}}{12}
$$

and use Jensen.

Landscape functions on metric graphs, after Filoche-Mayboroda

Theorem

Let $\mathrm{V}^{\mathrm{D}} \neq \emptyset$. Then each eigenpair (λ, φ) of $-\Delta^{\mathcal{G} ; \mathrm{V}^{\mathrm{D}}}$ (even of the magnetic Laplacian $\Delta_{\alpha}^{\mathcal{G} ; V^{\mathrm{D}}}$!) satisfies

$$
\frac{|\varphi(x)|}{\|\varphi\|_{\infty}} \leq \inf _{\delta>0} \delta\left[\left(-\lambda_{1}+\delta-\left(\left(-\Delta^{\mathcal{G}_{;} V^{\mathrm{D}}}\right)^{-1} \mathbb{1}\right)\right](x)\right.
$$

Landscape functions on metric graphs, after Filoche-Mayboroda

Theorem

Let $\mathrm{V}^{\mathrm{D}} \neq \emptyset$. Then each eigenpair (λ, φ) of $-\Delta^{\mathcal{G} ; \mathrm{V}^{\mathrm{D}}}$ (even of the magnetic Laplacian $\Delta_{\alpha}^{\mathcal{G} ; V^{\mathrm{D}}}$!) satisfies

$$
\frac{|\varphi(x)|}{\|\varphi\|_{\infty}} \leq \inf _{\delta>0} \delta\left[\left(-\lambda_{1}+\delta-\left(\left(-\Delta^{\mathcal{G}_{;} V^{\mathrm{D}}}\right)^{-1} \mathbb{1}\right)\right](x)\right.
$$

Application to the heat kernel

Proposition

There exists $C=C(\mathcal{G})$ with

$$
p_{t}^{\mathcal{G} ; V^{\mathbb{D}}}(x, y) \leq C\left[\sum_{k \in \mathbb{N}}\left|\lambda_{k}\right|^{2} \mathrm{e}^{-t \lambda_{k}}\right]\left(-\Delta^{\mathcal{G} ; V^{\mathbb{D}}}\right)^{-1} \mathbb{1}(x)\left(-\Delta^{\mathcal{G} ; V^{\mathrm{D}}}\right)^{-1} \mathbb{1}(y) .
$$

Example

If $\mathcal{G}=$

Same estimates holds even for the heat kernel of the magnetic Laplacian!

Proof (for general magnetic Laplacians)

- Consider an ONB of eigenvectors of $\Delta^{\mathcal{G} ; V^{D}}$. Then

$$
\varphi_{k}=\lambda_{k}\left(-\Delta_{\alpha}^{\mathcal{G} ; V^{\mathrm{D}}}\right)^{-1} \varphi_{k}
$$

and because $\mathrm{e}^{t \Delta^{q ; V^{\mathrm{D}}}}$ dominates $\mathrm{e}^{t \Delta_{\alpha}^{q} ; V^{\mathrm{D}}}$

$$
\left|\varphi_{k}\right|=\left|\lambda_{k}\left(-\Delta_{\alpha}^{\mathcal{G} ; V^{D}}\right)^{-1} \varphi_{k}\right| \leq\left|\lambda_{k}\right|\left(-\Delta^{\mathcal{G} ; V^{D}}\right)^{-1}\left|\varphi_{k}\right| \leq\left|\lambda_{k}\right|\left\|\varphi_{k}\right\|_{\infty}\left(-\Delta^{\mathcal{G} ; V^{D}}\right)^{-1} \mathbb{1} .
$$

- Bifulco-Kerner 2022: There exists $C(\mathcal{G})$ such that $\left\|\varphi_{k}\right\|_{\infty} \leq C(\mathcal{G})$ for all k.
- By Mercer,

$$
\begin{aligned}
p_{t}^{\mathcal{G} ; V^{\mathrm{D}}}(x, y) & =\sum_{k \in \mathbb{N}} \mathrm{e}^{-t \lambda_{k}} \varphi_{k}(x) \varphi_{k}(y) \\
& \leq C(\mathcal{G})^{2} \sum_{k \in \mathbb{N}}\left|\lambda_{k}\right|^{2} \mathrm{e}^{-t \lambda_{k}}\left(-\Delta^{\mathcal{G} ; \mathfrak{V}^{\mathrm{D}}}\right)^{-1} \mathbb{1}(x)\left(-\Delta^{\mathcal{G} ; V^{\mathrm{D}}}\right)^{-1} \mathbb{1}(y) .
\end{aligned}
$$

Unlike eigenfunctions, the torsion function can be computed explicitly

Exercise

Let \mathcal{G} be equilateral $\left(\ell_{\mathrm{e}} \equiv 1\right)$ and let $v:=\left(-\Delta^{\mathcal{G} ; v^{\mathrm{D}}}\right)^{-1} \mathbb{1}$, for $V^{\mathrm{D}} \neq \emptyset$. Then the restriction $g:=v_{\mathrm{VV}}: \vee \rightarrow \mathbb{R}$ is the unique solution of the system

$$
\left\{\begin{aligned}
g(v)=0, & v \in V^{D}, \\
\frac{1}{\operatorname{deg}(v)} \sum_{w \sim v} g(v)-g(w)=\frac{1}{2}, & v \in V \backslash V^{D}
\end{aligned}\right.
$$

Gradient of quadratic forms
Recall: given a closed quadratic form \mathfrak{A} with corresponding bilinear form \mathfrak{a}, the associated operator A satisfies

$$
\mathfrak{a}(f, h)=(-A f, h) \quad \forall f \in D(A) \text { and } h \in D(\mathfrak{a})\}
$$

Indeed, \mathfrak{A} is infinitely many times continuously differentiable, and in particular (Exercise)

$$
\mathfrak{A}^{\prime}(f) h=\mathfrak{a}(f, h)=(-A f, h)
$$

Then $-A$ is the gradient of $\mathfrak{A}:-A=\partial \mathfrak{A}$.

Example

For the Dirichlet form $\mathfrak{A}(f)=\frac{1}{2} \int_{\Omega}|\nabla f(x)|^{2} \mathrm{~d} x, f \in H_{0}^{1}(\Omega)$, there holds $\mathfrak{A}^{\prime}(f) g=\int_{\Omega} \nabla f(x) \nabla g(x) \mathrm{d} x=-\int_{\Omega} \Delta^{\Omega ; \mathrm{D}} f(x) g(x) \mathrm{d} x$: i.e., $\partial \mathfrak{A}=-\Delta^{\Omega ; \mathrm{D}}$.

Gradient of quadratic forms
Recall: given a closed quadratic form \mathfrak{A} with corresponding bilinear form \mathfrak{a}, the associated operator A satisfies

$$
\mathfrak{a}(f, h)=(-A f, h) \quad \forall f \in D(A) \text { and } h \in D(\mathfrak{a})\}
$$

Indeed, \mathfrak{A} is infinitely many times continuously differentiable, and in particular (Exercise)

$$
\mathfrak{A}^{\prime}(f) h=\mathfrak{a}(f, h)=(-A f, h)
$$

Then $-A$ is the gradient of $\mathfrak{A}:-A=\partial \mathfrak{A}$.

Example

For the Dirichlet form $\mathfrak{A}(f)=\frac{1}{2} \int_{\Omega}|\nabla f(x)|^{2} \mathrm{~d} x, f \in H_{0}^{1}(\Omega)$, there holds $\mathfrak{A}^{\prime}(f) g=\int_{\Omega} \nabla f(x) \nabla g(x) \mathrm{d} x=-\int_{\Omega} \Delta^{\Omega ; \mathrm{D}} f(x) g(x) \mathrm{d} x$: i.e., $\partial \mathfrak{A}=-\Delta^{\Omega ; \mathrm{D}}$.

Example

For all $p>1 \mathfrak{A}_{p}(f)=\frac{1}{p} \int_{\mathcal{G}}|\nabla f(x)|^{p} \mathrm{~d} x, f \in W_{0}^{1, p}(\Omega)$, is differentiable with derivative

$$
\mathfrak{A}_{p}^{\prime}(f) h=\int_{\Omega}|\nabla f(x)|^{p-2} \nabla f(x) \nabla g(x) \mathrm{d} x
$$

Gradient of quadratic forms
Recall: given a closed quadratic form \mathfrak{A} with corresponding bilinear form \mathfrak{a}, the associated operator A satisfies

$$
\mathfrak{a}(f, h)=(-A f, h) \quad \forall f \in D(A) \text { and } h \in D(\mathfrak{a})\}
$$

Indeed, \mathfrak{A} is infinitely many times continuously differentiable, and in particular (Exercise)

$$
\mathfrak{A}^{\prime}(f) h=\mathfrak{a}(f, h)=(-A f, h)
$$

Then $-A$ is the gradient of $\mathfrak{A}:-A=\partial \mathfrak{A}$.

Example

For the Dirichlet form $\mathfrak{A}(f)=\frac{1}{2} \int_{\Omega}|\nabla f(x)|^{2} \mathrm{~d} x, f \in H_{0}^{1}(\Omega)$, there holds $\mathfrak{A}^{\prime}(f) g=\int_{\Omega} \nabla f(x) \nabla g(x) \mathrm{d} x=-\int_{\Omega} \Delta^{\Omega ; \mathrm{D}} f(x) g(x) \mathrm{d} x$: i.e., $\partial \mathfrak{A}=-\Delta^{\Omega ; \mathrm{D}}$.

Example

For all $p>1 \mathfrak{A}_{p}(f)=\frac{1}{p} \int_{\mathcal{G}}|\nabla f(x)|^{p} \mathrm{~d} x, f \in W_{0}^{1, p}(\Omega)$, is differentiable with derivative

$$
\mathfrak{A}_{p}{ }^{\prime}(f) h=\int_{\Omega}|\nabla f(x)|^{p-2} \nabla f(x) \nabla g(x) \mathrm{d} x:=-\int_{\mathcal{G}} \Delta_{p}^{\Omega ; \mathrm{D}} f(x) h(x) \mathrm{d} x,
$$

i.e., $-\partial \mathfrak{A}_{p}$ is the p-Laplacian on Ω (with Dirichlet BCs).

Nonlinear semigroups

Theorem (Brezis 1973)

Given a convex, Isc, proper, coercive energy $\mathfrak{A}: L^{2}(X ; \mu) \rightarrow[0, \infty]$, the Cauchy problem for

$$
\partial_{t} u+\partial \mathfrak{A}(u)=0
$$

is well-posed.
\rightsquigarrow for all initial data u_{0} there exists a solution

$$
t \mapsto u(t)=: \mathrm{e}^{-\partial \mathfrak{A}} u_{0}
$$

Long time behavior vs p-homogeneity

Let \mathfrak{A}_{p} be convex, Isc, proper, coercive and p-homogeneous:

- we can consider

$$
\lambda_{1, p}:=\inf _{u \perp \operatorname{Ker}\left(\mathcal{A}_{p}\right)} \frac{p \mathfrak{A}(u)}{\|u\|^{p}}>0 ;
$$

- $u \perp \operatorname{Ker}\left(\mathfrak{A}_{p}\right)$ is called eigenfunction of $\partial \mathfrak{A}$ for the (variational) eigenvalue λ if

$$
\lambda\|u\|^{p-2} u=\partial \mathfrak{A}_{p}(u) .
$$

Convergence to steady state vs p-homogeneity If $p=2$,

$$
\|u(t)\|^{2} \leq\|u(0)\|^{2} \mathrm{e}^{-2 \lambda_{1} t}
$$

Convergence to steady state vs p-homogeneity If $p=2$,

$$
\|u(t)\|^{2} \leq\|u(0)\|^{2} \mathrm{e}^{-2 \lambda_{1} t}
$$

Theorem (Bungert-Burger 2020)

Let \mathfrak{A}_{p} be convex, Isc, proper, coercive and p-homogeneous, for $p \geq 1$: then the solution of $\partial_{t} u+\partial \mathfrak{A}_{p}(u)=0$ with $u(0) \perp \operatorname{Ker}\left(\overline{\mathfrak{A}_{p}}\right)$ satisfies

$$
\begin{array}{ll}
\|u(t)\|^{2} \leq \frac{1}{\|u(0)\|^{2-p}+(p-2) \lambda_{1, p} t} & \text { if } p \in(2, \infty), \\
\|u(t)\|^{2} \leq\|u(0)\|^{2-p}-(2-p) \lambda_{1, p} t & \text { if } p \in[1,2) .
\end{array}
$$

Convergence to steady state vs p-homogeneity If $p=2$,

$$
\|u(t)\|^{2} \leq\|u(0)\|^{2} \mathrm{e}^{-2 \lambda_{1} t}
$$

Theorem (Bungert-Burger 2020)

Let \mathfrak{A}_{p} be convex, Isc, proper, coercive and p-homogeneous, for $p \geq 1$: then the solution of $\partial_{t} u+\partial \mathfrak{A}_{p}(u)=0$ with $u(0) \perp \operatorname{Ker}\left(\overline{\mathfrak{A}_{p}}\right)$ satisfies

$$
\begin{array}{ll}
\|u(t)\|^{2} \leq \frac{1}{\|u(0)\|^{2-p}+(p-2) \lambda_{1, p} t} & \text { if } p \in(2, \infty), \\
\|u(t)\|^{2} \leq\|u(0)\|^{2-p}-(2-p) \lambda_{1, p} t & \text { if } p \in[1,2) .
\end{array}
$$

Remark

In particular, for $p<2$

$$
\|u(t)\|^{2-p} \geq(2-p) \lambda_{1, p}\left(T_{e x}-t\right) \quad \text { and } \quad u(t) \equiv 0 \quad \forall t \geq T_{e x},
$$

where

$$
T_{e x} \leq \frac{\|u(0)\|^{2-p}}{(2-p) \lambda_{1, p}}<\infty
$$

Likewise: infinite extinction time if $p>2$.

Estimating $\lambda_{1, p} \equiv$ controlling long-time behavior. For Ω and $p \neq 2$:

- Dirichlet: Bhattacharya (1999)
- Neumann: Brasco-Nitsch-Trombetti (2016)

Prototypical Example

The p-Laplacian $\Delta_{p}^{\mathcal{G}}$ is (minus) the derivative $-\mathfrak{A}^{\mathcal{G}}{ }_{p}$ in $L^{2}(\mathcal{G})$ of the energy

$$
\mathfrak{A}_{p}(f):=\frac{1}{p} \int_{\mathcal{G}}\left|f^{\prime}\right|^{p} \mathrm{~d} x, \quad f \in W^{1, p}(\mathcal{G}):=C(\mathcal{G}) \cap \bigoplus_{e \in E} W^{1, p}\left(0, \ell_{e}\right) .
$$

(\leadsto continuity + nonlinear Kirchhoff-type vertex conditions)
$\Delta_{\rho}^{\mathcal{G}}$ generates on $L^{2}(\mathcal{G})$ a nonlinear (Markovian) semigroup.
(Likewise if Dirichlet conditions are imposed on a vertex subset $\mathrm{V}^{\mathrm{D}} \subset \mathrm{V}$.)

Eigenvalues of (p-)Laplacians on metric graphs

Proposition (Hofmann-Kennedy-M.-Plümer 2021)

$-\Delta_{\rho}^{\mathcal{G}}$ has countably many eigenvalues $0=\lambda_{0, p}(\mathcal{G}) \leq \lambda_{1, p}(\mathcal{G}) \leq \ldots \rightarrow+\infty$:

$$
\lambda_{n, p}(\mathcal{G})=(p-1)\left(\frac{\pi_{p}}{|\mathcal{G}|}\right)^{p} n^{p}+o\left(n^{p}\right) \quad \text { as } n \rightarrow \infty,
$$

where $\pi_{p}:=\frac{2 \pi}{p \sin \left(\frac{\pi}{p}\right)}, p \in(1, \infty)$.

Bungert-Burger \Rightarrow If $u(0) \perp \mathbb{1}$, then

$$
\|u(t)\|^{2} \leq \frac{1}{\|u(0)\|^{2-p}+(p-2) \lambda_{1, p} t} \quad \text { if } p \in(2, \infty)
$$

How fast/slow can convergence be?

If additionally \mathcal{G} is 2 -connected:

Bungert-Burger \Rightarrow If $u(0) \perp \mathbb{1}$, then

$$
\begin{array}{ll}
\|u(t)\|^{2} \leq \frac{1}{\|u(0)\|^{2-p}+(p-2) \lambda_{1, p} t} & \text { if } p \in(2, \infty) \\
\|u(t)\|^{2} \leq\|u(0)\|^{2-p}-(2-p) \lambda_{1, p} t & \text { if } p \in[1,2) .
\end{array}
$$

How fast/slow can convergence be?

Bungert-Burger \Rightarrow If $u(0) \perp \mathbb{1}$, then

$$
\begin{array}{ll}
\|u(t)\|^{2} \leq \frac{1}{\|u(0)\|^{2-p}+(p-2) \lambda_{1, p} t} & \text { if } p \in(2, \infty) \\
\|u(t)\|^{2} \leq\|u(0)\|^{2-p}-(2-p) \lambda_{1, p} t & \text { if } p \in[1,2) .
\end{array}
$$

How fast/slow can convergence be?

Theorem (Del Pezzo-Rossi 2016; Berkolaiko-Kennedy-Kurasov-M. 2017)
Given a graph on $E<\infty$ edges of finite length, for all $p \in(1, \infty)$
$(p-1) \frac{\pi_{p}^{p}}{|\mathcal{G}|^{p}} \leq \lambda_{1, p}(\mathcal{G}) \leq(p-1) \frac{E^{p} \pi_{p}^{p}}{|\mathcal{G}|^{p}}$, with equality iff $\mathcal{G}=\bullet$
If additionally \mathcal{G} is 2-connected:
$\lambda_{1, p}(\mathcal{G}) \geq 2^{p}(p-1) \frac{\pi_{\rho}^{p}}{|\mathcal{G}|^{p}}$, with equality iff $\mathcal{G}=$

References - \#1

- Kramar-Fijavž-M.-Sikolya, Variational and semigroup methods for waves and diffusion on networks, AMO 2007
- M.-Romanelli, Dynamic and generalized Wentzell node conditions for network equations, MMAS 2007
- Kennedy-Kurasov-Malenová-M., On the spectral gap of a quantum graph, Ann. Poincaré 2016
- Berkolaiko-Kennedy-Kurasov-M., Edge connectivity and the spectral gap of combinatorial and quantum graphs..., J. Phys. A 2017
- Becker-Gregorio-M., Schrödinger and polyharmonic operators on infinite graphs, JMAA 2021
- Glück-M., Eventual Domination for Linear Evolution Equations, Math. Z. 2021
- Hofmann-Kennedy-M.-Plümer, On Pleijel's nodal domain theorem for quantum graphs, Ann. Poincaré 2021

References - \#2

- M.-Pivovarchik, Distinguishing cospectral quantum graphs by scattering, J. Phys. A 2022
- M.-Plümer, On torsional rigidity and ground-state energy of compact quantum graphs, Calc. Var. 2023
- Berkolaiko-Kennedy-Kurasov-M., Impediments to diffusion in quantum graphs..., Proc. AMS 2023
- Egidi-M.-Seelmann, Sturm-Liouville Problems And Global Bounds By Small Control Sets..., arXiv:2304.10441
- Bifulco-M., On the Lipschitz continuity of the heat kernel, arXiv:2307.08889
- Baptista-Kennedy-M., Mean distance on metric graphs, in preparation

Thank you for your attention!

[^0]: ${ }^{1}$ Not even the vertices of degree 1 are consistently "boundary"! E.g., the hot spot conjecture dramatically fails for metric graphs: the hot spots need not be located at vertices of degree 1 .

[^1]: ${ }^{2}$ Recall: $\lambda_{k} \geq 0$!

