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
∂u

∂t
(t, x) = ∆u(t, x) t ≥ 0, x ∈ Ω

u(0, x) = u0(x) x ∈ Ω

u(t, z) = 0 t ≥ 0, z ∈ ∂Ω

If Ω ⊂ Rd is open, Lipschitz, bounded, then ∆ with Dirichlet BCs is self-adjoint and
negative semidefinite, and it has compact resolvent:

the eigenvalues λk , k ∈ N, of −∆ have finite multiplicities and accumulate at +∞
there exists an ONB of L2(Ω) consisting of corresponding eigenfunctions φk , k ∈ N.
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Spectral Theorem:

u(t, x) = et∆u0(x)

=
∑
k∈N

e−tλk ⟨φk , u0⟩L2(Ω)φk(x)

=

∫
Ω

∑
k∈N

e−tλkφk(x)φk(y)u0(y)dy

=:

∫
Ω

pt(x , y)u0(y)dy

et∆ is compact, self-adjoint, and positive
definite
⇝ Mercer’s Theorem: the series

pt(x , y) :=
∑
k∈N

e−tλkφk(x)φk(y)

converges absolutely and uniformly in
Ω× Ω, for all t > 0.

James Mercer, 1883–1932

4 / 90



Spectral Theorem:

u(t, x) = et∆u0(x)

=
∑
k∈N

e−tλk ⟨φk , u0⟩L2(Ω)φk(x)

=

∫
Ω

∑
k∈N

e−tλkφk(x)φk(y)u0(y)dy

=:

∫
Ω

pt(x , y)u0(y)dy

et∆ is compact, self-adjoint, and positive
definite
⇝ Mercer’s Theorem: the series

pt(x , y) :=
∑
k∈N

e−tλkφk(x)φk(y)

converges absolutely and uniformly in
Ω× Ω, for all t > 0.

James Mercer, 1883–1932

5 / 90



Heat kernels

(X , d , µ) metric measure space, A operator on Lp(X ;µ)

p = pt(x , y) : (0,∞)× X × X → C is the heat kernel associated with A if ∀t > 0,
∀x , y ∈ X

(i) pt(x , ·)f (·) ∈ L1(X ) for all f ∈ Lp(X )

(ii) t 7→ pt(·, y) ∈ C 1 ((0,∞); Lp(X )) ∩ C ((0,∞);D(Ax))

(iii) ∂
∂t
pt(·, y) = Axpt(·, y)

(iv) pt+s(x , y) =
∫
X
pt(x , z)ps(z , y) dµ(z)

(v) lim
t→0+

∫
X
pt(·, y)f (y) dµ(y) = f (·) (in Lp(X )) for all f ∈ Lp(X )

6 / 90



Let A be differential operator on L2(Ω) (with BC)

If there is a heat kernel associated with A, then

(∗)


∂u

∂t
(t, x) = Au(t, x) t ≥ 0, x ∈ Ω

u(0, x) = u0(x) x ∈ Ω

is well-posed.

(∗) well-posed ̸⇒ A has a heat kernel: e.g. Ω = R, A = ∂
∂x

.
Then u(t, x) =

∫
R δx+t(y)u0(y)dy

but pt(·, y) = δ·+t(y) ̸∈ H1(R)

A has a heat kernel ̸⇒

pt(x , y) =
∑
k∈N

e−tλkφk(x)φk(y)

e.g. Ω = R, A = ∂2

∂x2
, pt(x , y) =

1√
4πt

e−
|x−y|2

4t but no eigenvalues
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Even if
pt(x , y) =

∑
k∈N

e−tλkφk(x)φk(y),

this may be difficult to use to deduce information on the heat equation.

However,

pt(·, ·) > 0 ∀t ⇔ parabolic strict maximum principle
(i.e., u0 ≥ 0, u ̸≡ 0 ⇒ u(t, ·) > 0 ∀t)

0 ≤ pt(·, ·) ≤ 1 ∀t ⇔ Markov property
(i.e., 0 ≤ u0 ≤ 1 ⇒ 0 ≤ u(t, ·) ≤ 1 ∀t)

|p(1)
t (x , y)| ≤ p

(2)
t (x , y) ⇔ domination

(i.e., |u(1)
0 | ≤ u

(2)
0 ⇒ |u(1)(t)| ≤ u(2)(t) ∀t)

pt(·, ·) ∈ C∞(X × X ) ∀t > 0 ⇔ smoothing effect
(i.e., u0 ∈ D′(X ) ⇒ u(t, ·) ∈ C∞(X )); Schwartz–Hörmander

10 / 90



Theorem

Given G on finitely many edges of finite length, the Laplacian ∆G on G generates an
analytic C0-semigroup on L2(G). Indeed, it is associated with a heat kernel pG = pG

t (x , y)
that satisfies.

0 ≤ pG
t (x , y) ≤ 1 for all t and all x , y ∈ G;

if G is connected, 0 < pt(x , y) for all t and all x , y ∈ G;

if Dirichlet conditions are imposed on a subset VD ⊂ V, pG;VD

t (x , y) ≤ pG
t (x , y);

both pG
t and ∂2

∂x2
∂2

∂y2
pG
t are jointly Lipschitz continuous, but pG

t (·, y) is not
continuously differentiable for any y unless G is a loop or a path.
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C0-semigroups

Definition

Let E be a normed space. A C0-semigroup is a family (T (t))t≥0 of bounded linear
operators on E such that

T (0) = Id

T (t + s) = T (t)T (s)

limt→0 T (t)f = f for all f ∈ E.

Example

T (t)f (·) = f (t + ·) is a C0 semigroup on E = Lp(R) for any p ∈ [1,∞) (but not for
p = ∞: Exercise).

Example

T (t)f (·) = etq(·)f (·) is a C0 semigroup on E = Lp(Ω) for any p ∈ [1,∞) and any
q ∈ L∞(X ).
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Generators

Definition

An operator A on E is said to be a generator of a C0-semigroup (T (t))t≥0 on E if

D(A) =

{
f ∈ E : ∃ lim

t≥0+

T (t)f − f

t

}
Af = lim

t≥0+

T (t)f − f

t
.

Example

T (t)f (·) = f (t + ·) on Lp(R) is generated by

D(A) = W 1,p(R)

Af = f ′.

Example

T (t)f (·) = etq(·)f (·) on Lp(Ω), Ω ⊂ Rd is generated by

D(A) = Lp(Ω)

Af = qf .
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Recall:
p = pt(x , y) : (0,∞)× X × X → C is the heat kernel associated with A if ∀t > 0,
∀x , y ∈ X

(i) pt(x , ·)f (·) ∈ L1(X ) for all f ∈ Lp(X )

(ii) t 7→ pt(·, y) ∈ C 1 ((0,∞); Lp(X )) ∩ C ((0,∞);D(Ax))

(iii) ∂
∂t
pt(·, y) = Axpt(·, y)

(iv) pt+s(x , y) =
∫
X
pt(x , z)ps(z , y) dµ(z)

(v) lim
t→0+

∫
X
pt(·, y)f (y) dµ(y) = f (·) (in Lp(X )) for all f ∈ Lp(X )

Example

If there is a heat kernel p associated with A, then A generates on E = L2(X ;µ) a
C0-semigroup given by

T (t)f =

∫
X

pt(·, y)f (y) dµ(y), t ≥ 0.
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Proposition

For a generator A of a C0-semigroup (T (t))t≥0 on E the following hold:

A is linear;

if f ∈ D(A), then T (t)f ∈ D(A) and d
dt
T (t)f = T (t)Af = AT (t)f for all t ≥ 0;

A is closed and densely defined;

(T (t))t≥0 determines its generator uniquely, and vice versa.

Proof.

Exercise

The C0-semigroup generated by A is denoted by (etA)t≥0.
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Analytic semigroups

Definition

A C0-semigroup (etA)t≥0 on a Banach space E is called analytic if

∥tAetAf ∥ ≤ c∥f ∥

for some c > 0 and all t ∈ (0, 1] and f ∈ D(A).

In particular,
∥AetAf ∥ ≤ c(t)∥f ∥

i.e., etA is bounded from E to D(A), hence (Exercise) from E to
⋂

k∈N D(Ak), for all
t > 0.
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Example

T (t)f (·) = etq(·)f (·) is analytic, for any q ∈ L∞(Ω);

T (t)f (·) = f (t + ·) is NOT analytic.

Remark

A C0-semigroup (et∆
G
)t≥0 is analytic if and only if for some θ ∈ (0, π) it has an analytic extension

(et∆
G
)t∈Σθ

that is bounded on Σθ ∩ {z ∈ C : |z| ≤ 1}, where

Σθ := {reiα : r > 0, |α| < θ}.
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Any closed quadratic form A on L2(X ) is associated with a unique self-adjoint, positive
semi-definite operator A on L2(X ), and vice versa: there holds

D(A) = {f ∈ D(A) : ∃g ∈ L2(X )s.t. a(f , h) = (g , h) ∀h ∈ D(a)}
Af = −g

where a is the bilinear form corresponding with A, i.e., A(f ) = 1
2
a(f , f ).

Furthermore, A has compact resolvent iff D(A) is compactly embedded in L2(X ;µ).
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Self-adjoint operators and the Spectral Theorem

Let A be a self-adjoint, negative semidefinite operator on L2(X ;µ) with compact
resolvent.
Then

L2(X ;µ) has an ONB of eigenvectors of A: (−λk , φk)k∈N;

A can be diagonalized:

D(A) =

{
f ∈ L2(X ;µ) :

∑
k∈N

λ2
k(f , φk)

2 <∞

}
,

Af = −
∑
k∈N

λk(f , φk)φk

A is associated with a closed quadratic form A given by

D(a) =

{
f ∈ L2(X ;µ) :

∑
k∈N

λk(f , φk)
2 <∞

}
a(f , g) =

∑
k∈N

λk(f , φk)(φk , g).

! λk ≥ 0
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Semigroups associatd with closed quadratic forms

Proposition

Every self-adjoint, negative semidefinite operator generates an analytic semigroup.

Proof.

For simplicity, only for operators with compact resolvent:

By functional calculus, etA :=
∑

k∈N e−tλk (f , φk)φk is a well-defined bounded linear

operator on L2(X ;µ);

Given f ∈ D(A) and t > 0

∥tAetAf ∥2 = ∥t d

dt
etAf ∥2 =

∑
k∈N

|tλke
−tλk (f , φk)|2 ≤

1

e
∥f ∥2
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Introducing metric graphs

Figure: Valentina Vetturi, Tails, 2023
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Introducing metric graphs

Let

E = {e1, e2, . . .} finite or countably infinite set (“edge set”)

ℓ : E → (0,∞) (“edge lengths”)

∼ equivalence relation on V :=
⊔

e∈E{0, ℓe} (“wiring”)

Define E :=
⊔

e∈E[0, ℓe] and extend canonically ∼ to E .

Then G := E⧸∼ is a metric graph and V := V⧸∼ its vertex set.

G := (V,E) is the underlying combinatorial graph of G.

All topological features (number κ of connected components, Betti number
β := #E−#V + κ, etc.) are determined by ∼.
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The metric measure structure of G does not change upon insertion of artificial, degree-2
vertices.

Inserting degree-2 vertices defines an equivalence relation. We will not distinguish
between a metric graph and any of its representatives.

A metric graph does not have an intrinsic notion of boundary1, but each of its subgraphs
does.

1Not even the vertices of degree 1 are consistently “boundary”! E.g., the hot spot conjecture dramatically
fails for metric graphs: the hot spots need not be located at vertices of degree 1.
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Goal: define a Laplacian on G by means of a quadratic function on L2(G).
Idea: integrate −∆Gf ∈ L2(G) against a test function h ∈ C(G) ∩ L2(G).

(−∆Gf , h) =

∫
G
f ′′(x)h(x) dx

= −
∑
e∈E

∫ ℓe

0

f ′′e (x)he(x) dx

= −
∑
e∈E

f ′e (x)he(x)dx
∣∣∣x=ℓe

x=0
+

∑
e∈E

∫ ℓe

0

f ′e (x)h
′
e(x) dx

!
= −h(v)

∑
e∼v

∂fe
∂n

(v) +
∑
e∈E

∫ ℓe

0

f ′e (x)h
′
e(x)dx

?
=

∑
e∈E

∫ ℓe

0

f ′e (x)h
′
e(x)dx = a(f , h)

26 / 90



Goal: define a Laplacian on G by means of a quadratic function on L2(G).
Idea: integrate −∆Gf ∈ L2(G) against a test function h ∈ C(G) ∩ L2(G).

(−∆Gf , h) = −
∫
G
f ′′(x)h(x)dx

= −
∑
e∈E

∫ ℓe

0

f ′′e (x)he(x) dx

= −
∑
e∈E

f ′e (x)he(x)dx
∣∣∣x=ℓe

x=0
+

∑
e∈E

∫ ℓe

0

f ′e (x)h
′
e(x) dx

!
= −h(v)

∑
e∼v

∂fe
∂n

(v) +
∑
e∈E

∫ ℓe

0

f ′e (x)h
′
e(x)dx

?
=

∑
e∈E

∫ ℓe

0

f ′e (x)h
′
e(x)dx= a(f , h)

27 / 90



Consider
H1(G) := {f ∈ C(G) ∩ L2(G) : f ′ ∈ L2(G)}

and

D(∆G) := −

{
f ∈ H1(G) ∩

⊕
e∈E

H2(0, ℓe) :
∑
e∼v

∂fe
∂n

(v) = 0 ∀v ∈ V

}

Proposition (Pavlov–Faddeev 1983, Nicaise 1986)

∆G is a self-adjoint operator on L2(G) with compact resolvent.

Proof.

It suffices to prove that ∆G is associated with the closed quadratic form
aG(f , g) :=

∫
G f ′(x)g ′(x) dx with domain D(aG) := H1(G).

Already proved: ∆G ⊂ A. Exercise: prove A ⊂ ∆G .

D(aG) = H1(G) ⊂
⊕

e∈E H
1(0, ℓe)

c
↪→

⊕
e∈E L

2(0, ℓe) = L2(G).

Remark

More generally, every bounded elliptic bilinear form a on L2(X ;µ) is associated with an operator that generates

an analytic semigroup on L2(X ;µ); the generator is self-adjoint iff a is symmetric.
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Useful information about heat kernel on metric graphs?

Hardly so. Explicit construction of the heat kernel of (et∆
G
)t≥0 actually available, via

parametrix; however, the formula yields a hardly tractable series.

Proposition (Roth 1984; Becker–Gregorio–M. 2021)

∆G is associated with a heat kernel pG given by

pG
t (x , y) :=

1√
4πt

∑
γ∈Px,y

α(γ)e−
length(γ)2

4t

for appropriate “scattering coefficients” α(P) ∈ [−1, 1].

Also already known:

pG
t (x , y) :=

∑
k∈N

e−tλkφG
k (x)φ

G
k (y)

(uniformly in G × G, for all t > 0).
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Markovian property

Proposition (Kramar–M.–Sikolya 2007)

(et∆
G
)t≥0 is a Markovian semigroup; it satisfies a strict maximum principle if G is

connected.

Proof.

Beurling–Deny 1959: If A ∼ a, and a ≥ 0, then (etA)t≥0 is Markovian iff f ∈ D(a)

implies f ∧ 1 ∈ D(a) and a(f ∧ 1, (f − 1)+) ≥ 0.

Ouhabaz 1996: If A ∼ a, and if (etA)t≥0 is positive, then (etA)t≥0 satisfies the strict
maximum principle iff for each measurable ω ⊂ X µ(ω) = 0 or µ(X \ ω) = 0
whenever 1ωf ∈ D(a) for every f ∈ D(a).

fe ∈ H1(0, ℓe) implies fe ∧ 1 ∈ H1(0, ℓe) and∫ ℓe

0

(fe ∧ 1)′(x)(fe − 1)+)′(x) dx =

∫
{f≤1}

(fe ∧ 1)′(x)(fe − 1)+)′(x) dx = 0.

Also, 1ωe f ̸∈ H1(0, ℓe) ↪→ C [0, ℓe] unless ωe = ∅ or ωe(0, ℓe).

To conclude, observe that f ∈ C(G) implies f ∧ 1 ∈ C(G).
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Domination

A C0-semigroup (T (t))t≥0 on Lp(X ) is said to dominate another C0-semigroup (S(t))t≥0

if |S(t)f | ≤ T (t)|f | for all f ∈ Lp(X ) and all t ≥ 0.

Proposition

Upon imposing Dirichlet conditions on VD ⊂ V we obtain a new C0-semigroup

(et∆
G;VD

)t≥0 that is dominated by (et∆
G
)t≥0.

Exercise (Diamagnetic inequality for point interactions)

Same holds if magnetic vertex conditions

u(v+) = e
iθvu(v−)

are imposed on finitely many vertices Vm of degree 2.
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Given two subspaces U,V of L2(X ;µ), U is a generalized ideal of V if

u ∈ U ⇒ |u| ∈ V

u ∈ U, v ∈ V , |v | ≤ |u| ⇒ v sgn u ∈ U.

Example

H1
antiper (0, 1) is a generalized ideal of H1

per (0, 1); neither of them is a generalized ideal of
H1(0, 1), but H1

0 (0, 1) is.
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Proof

Ouhabaz 1996 : Let A ∼ a , B ∼ b, S ∼ s. If a, b are both restrictions of s, and if
(etA)t≥0, (e

tS)t≥0 are both positive, then (etA)t≥0 dominates (etB)t≥0 iff D(b) is a
generalized ideal of D(a).

If Dirichlet conditions are imposed on VD ⊂ V, then the corresponding operator

∆G;VD

is associated with the quadratic form

b(f , g) = a(f , g), f , g ∈ D(b) := H1
0 (G; VD)

where H1
0 (G; VD) := {f ∈ H1(G) : f (v) = 0 ∀v ∈ VD}.

Let us check Ouhabaz’ criterion: introduce

s(f , g) =

∫
G
f ′(x)g ′(x) dx , f , g ∈ D(s) :=

⊕
e∈E

H1(0, ℓe)

which satisfies the Beurling–Deny criterion.

H1
0 (G; VD) is a generalized ideal of H1(G): f ∈ H1

0 (G; VD) ⇒ |f | ∈ H1(G); and
|g | ≤ |f | with f ∈ H1

0 (G; VD) ⇒ g sgn f ∈ H1
0 (G; VD).
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Theorem (Kramar–M.–Sikolya 2007, M.–Romanelli 2007, Bifulco–M. 2023)

Given G on finitely many edges of finite length, the Laplacian ∆G on G is associated with
a heat kernel pG = pG

t (x , y) that satisfies.

0 ≤ pG
t (x , y) ≤ 1 for all t and all x , y ∈ G;

if G is connected, 0 < pt(x , y) for all t and all x , y ∈ G;

if Dirichlet conditions are imposed on a subset VD ⊂ G, pG;VD

t (x , y) ≤ pG
t (x , y);

both pG
t and ∂2

∂x2
∂2

∂y2
pG
t are jointly Lipschitz continuous, but pG

t (·, y) is not
continuously differentiable for any y unless G is a loop or a path.
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Smoothness of functions in D(∆G)

Lemma (M.–Plümer 2023)

D(∆G) is continuously embedded in Lip(G).

Proof.

D(∆G) ↪→ C(G) ∩
⊕
e∈E

H2(0, ℓe) ↪→ C(G) ∩
⊕
e∈E

W 1,∞(0, ℓe).

Let u ∈ C(G) ∩
⊕
e∈E

W 1,∞(0, ℓe). Let x , y ∈ G and let γ ⊂ G be a path connecting x

and y . Then

|u(x)− u(y)| =
∣∣∣∣∫

γ

u′(t)dt

∣∣∣∣ ≤ length(γ)∥u′∥∞.

γ arbitrary ⇒
|u(x)− u(y)| ≤ ∥u′∥∞dG(x , y).

Therefore, C(G) ∩
⊕
e∈E

W 1,∞(0, ℓe) ↪→ Lip(G).
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Proof - #1

Kantorovič–Wulich: Given p ∈ [1,∞), any operator in L(Lp(X ); L∞(X )) has an

integral kernel of class L∞(X ; Lp′(X )), and vice versa.

Leonid Vital’evič Kantorovič

1912–1986

Boris Sacharowitsch Wulich

1913–1978

D(∆G) ↪→ Lip(G) ↪→ L∞(G): Therefore, et∆
G
(L2(G)) ⊂ L∞(G) and by duality

et∆
G
(L1(G)) ⊂ L2(G): by the semigroup law et∆

G
(L1(G)) ⊂ L∞(G), i.e., et∆

G
has a

heat kernel pG
t ∈ L∞(G × G), for all t > 0.

pt(·, y) ∈ D(∆G) for all t > 0, but functions in D(∆G) are not differentiable at any
vertex of degree ≥ 3.
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Proof - #2

Let t > 0 and f ∈ L2(G). Because (i) D(∆G) ↪→ Lip(G) and (ii) et∆
G
is bounded

from L2(X ;µ) to D(∆G)

|et∆
G
f (x)− et∆

G
f (x ′)| ≤ C(t)dG(x , x ′)∥et∆

G
f ∥D(∆G )

≤ C(t)

te
dG(x , x ′)∥f ∥L2(G) ∀x , x ′ ∈ G.

Hence, for all f ∈ L2(G)∣∣∣(f , (pt(x , ·)− pt(x
′, ·))

)∣∣∣ = ∣∣∣∣∫
G
f (y)

(
pt(x , y)− pt(x

′, y)
)
dy

∣∣∣∣
=

∣∣∣∣∫
X

f (y)
(
pt(x , y)− pt(x

′, y)
)
dy

∣∣∣∣
=

∣∣∣et∆G (
f (x)− f (x ′)

)∣∣∣
≤ C ′(t)dG(x , x ′)∥f ∥L2(G).

We finally conclude that∥∥pt(x , ·)− pt(x
′, ·)

∥∥
L2(X ;µ)

= sup
∥f ∥

L2
=1

∣∣(f , (pt(x , ·)− pt(x
′, ·))

)∣∣
≤ C ′(t)dG(x , x ′).
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Proof - #3

By the semigroup law

pt(x , y) =

∫
G
p t

2
(x , z)p t

2
(z , y) dz

whence for a.e. y ∈ G

|pt(x , y)− pt(x
′, y)| ≤ C ′(

t

2
)∥p t

2
(·, y)∥L2(G)d

G(x , x ′)

≤ C ′′(
t

2
)∥p t

2
∥L∞(G×G)d

G(x , x ′),

i.e., G ∋ x 7→ pt(x , ·) ∈ L∞(G) is Lipschitz.
Finally,∣∣pt(x , y)− pt(x

′, y ′)
∣∣ = ∣∣∣∣ ∫

X

p t
2
(x , z)p t

2
(z , y) dz −

∫
X

p t
2
(x ′, z)p t

2
(z , y ′) dz

∣∣∣∣
≤

∥∥p t
2
(x , ·)

∥∥
L2(G)

∥∥p t
2
(·, y)− p t

2
(·, y ′)

∥∥
L2(G)

+
∥∥p t

2
(·, y ′)

∥∥
L2(G)

∥∥p t
2
(x , ·)− p t

2
(x ′, ·)

∥∥
L2(G)

≤ C ′′′(
t

2
)(dG(x , x ′) + dG(y , y ′)).

Likewise for ∂2

∂x2
∂2

∂y2
pG
t (·, ·), using pt(·, y) ∈ D(∆G) for a.e. y ∈ G.
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More general operators

Proposition

Everything we have seen is still valid if ∆ is replaced by

Ac,V ,γu :=
∂

∂x

(
c(·) ∂

∂x

)
+ V

with “δ-interaction”

continuity +
∑
e∼v

ce(v)
∂ue
∂n

(v) + γ(v)u(v) = 0

for c ∈ L∞(G), V ∈ L1(G), and (γ(v))v∈V.

Proof.

Ac,V ,γ is associated with

aGc,V ,γ(f ) :=

∫
G
a(x)|f ′(x)|2 dx +

∫
G
V (x)|f (x)|2 dx +

∑
v∈V

γ(v)|f (v)|2

with same form domain D(aGc,V ,γ(f )) = D(aG) = H1(G).

! Dirichlet conditions at a vertex can be obtained letting γ(v) → +∞.
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Lack of domination

Proposition

If G,G′ any two different wirings over the same edge set, then et∆
G
does not dominate

et∆
G′

for any t > 0.

Proof.

D(aG) is not a generalized ideal of D(aG
′
) (Exercise)
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Miscellaneous comments

Kennedy–Lang 2020: Similar results also hold operators with V ∈ L1(G;C),
(γ(v))v∈V ⊂ C. In particular, |etAc,V ,γ | ≤ etAc,Re V ,Re γ

Kurasov 2010, Berkolaiko–Weyand 2012, Egidi–M.–Seelmann 2023: One can also
add a magnetic potential: somewhat trivial, because a gauge transformation makes
∆α similar to ∆. A diamagnetic inequality holds:

|et∆α | ≤ et∆ for all t > 0.

Glück–M. 2021: If G,G′ any two different wirings over the same edge set, then et∆
G

does not even eventually dominate et∆
G′
:

there is no t0 > 0 such that et∆
G

≤ et∆
G′

for all t > t0.

Open question: Given two different wirings G,G′, is there M > 0 such that

et∆
G
≤ Met∆

G′
for all t > 0?
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Long-time behavior

By resolvent compactness, ∆G has an ONB of eigenfunctions (φk) with associated
eigenvalues −λk = −λk(G)2.

If G is connected, then λ0 = 0 (simple!) with φ0 = 1G .

Because et∆
G
f (·) =

∞∑
k=0

e−tλkφk(·)
∫
G φk(x)f (x) dx ,

∥et∆
G
f −

∫
G
φ0(x)f (x) dx∥ = ∥

∞∑
k=1

e−tλkφk

∫
G
φk(x)f (x) dx∥

≤ e−tλ1∥f ∥

Estimating λ1 is crucial to study the long-time behaviour!

2Recall: λk ≥ 0!
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The Laplacian on metric graphs and their underlying combinatorial graphs

Given G, consider the underlying combinatorial graph G, its degree matrix DG and its
discrete Laplacian LG.

Proposition (von Below 1985)

If all ℓe ≡ ℓ, TFAE:

λ is eigenvalue of −∆G

α := cos
√
λ is eigenvalue of Id−DG− 1

2LGDG− 1
2

λ

cos
√
λ

1

−1

α...

...−α

π20 µ
(π − √

µ)2 (π +
√
µ)2 (2π − √

µ)2
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1 Heat equation and heat kernels

2 Laplacians on metric graphs

3 Spectral geometry
Basic estimates in terms of total length
Alternative estimates using different quantities

4 Thermal geometry

5 Nonlinear diffusion
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Nicaise’ Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph G on finitely many edges of finite length λ1(G) ≥ π2

|G|2 , with equality

if G=

Theorem (Friedlander 2005)

Nicaise’ Inequality is sharp. Indeed

λj(∆G) ≥
π2(j + 1)2

4|G|2 for all j ∈ N,

with equality if (and only if!) G is a metric star on j + 1 edges of same length.

Exercise (Nicaise 1987)

Prove the estimate λ1(G; VD) ≥ π2

4|G|2
if VD ̸= ∅, with equality iff G= .
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Proof of Nicaise’ Inequality – Kurasov–Naboko’s version

Produce G(2) by replacing each edge e in G by two identical copies of e: then
|G(2)| = 2|G|.

Take (λ1, φ1) and clone φ1 to produce an admissibile test function φ
(2)
1 for λ1(G(2)):

observe that φ
(2)
1 ⊥ 1G(2)

.

Also, ∥φ(2)
1 ∥2L2 = 2∥φ1∥2L2 , ∥φ

(2)′

1 ∥2L2 = 2∥φ′
1∥2L2 : hence

λ1(G) =
∥φ′

1∥2L2
∥φ1∥2

L2
≥ min

f∈H1(G(2))

f⊥1G(2)

∥f ′∥2
L2

∥f ∥2
L2

= λ1(G(2)).

Cut through all vertices to turn G(2) into a cycle C: this is possible because each
vertex in G(2) has even degree, so G(2) contains a Eulerian cycle: λ1(G(2) ≥ λ1(C).

However, λ1(C) = 4π2

|C|2 = π2

|G|2 .
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Selected surgery principles

Proposition (Kennedy–Kurasov–Malenová–M. 2016)

Given G with finitely many edges of finite length, produce G′ by

(1) cutting through a vertex v to create two new vertices v1, v2 ∈ G, or
(2) attaching a pendant graph H at a vertex v ∈ G.
Then λk(G) ≥ λk(G′).
Furthermore, λ1(G) = λ1(C) if
(3) G is a figure-8 graph and C is a cycle graph with |G| = |C|.

Proof.

(1) H1(G) ⊃ H1(G′)
(2) Take (λ1, φ1) and extend φ1 by continuity to a function that is constant on H. Then
φ11G − |H|1H is orthogonal to 1G′ , hence an admissible test function for λ1(G′).
(3) Construct C from G by cutting through the (only) vertex v, thus creating v1, v2. By
(1), λ1(C) ≤ λ1(G).
Pick a ground state ψ1 on C: up to rotation, wlog ψ1(v1) = ψ1(v2): thus, ψ1 ∈ H1(G) is
an admissible test function on G, hence λ1(G) ≤ λ1(C).
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An upper estimate

Theorem (Kennedy–Kurasov–Malenová–M. 2016)

For any metric graph G on E ≥ 2 edges of finite length

λ1(G) ≤
π2E 2

|G|2 .

Equality holds for equilateral stars and equilateral pumpkin graphs...

M.–Pivovarchik 2022: ...and for an infinite class of metric graphs (“inflated stars”, after
Butler–Grout 2011).
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Proof

Glue all vertices to produce a new metric graph G′ (a “metric flower”): then
λ1(G) ≤ λ1(G′).

Produce a figure-8 graph G′′ by plucking all petals of the metric flower but the two
longest ones: then λj(G′) ≤ λj(G′′) for all j .

λ1(G′′) = λ1(Cycle of same total length as G′) = 4π2

|G′′|2 (easy proof using

symmetry).

However, by the pigeonhole principle |G′′| ≥ 2 |G|
E
.
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Weyl asymptotics

Recall:

λj(∆G) ≥
π2(j + 1)2

4|G|2 for all j ∈ N,

Proposition

Given G on E <∞ edges of finite length,

λj(G) ≤
E 2π2(j + 1)2

|G|2

Proof.

Repeat the previous proof and, in the last step, observe that

λj(G′′) ≤ λj+1(Cycle of same total length as G′) ≤ (j+1)2π2

|G′′|2 (again by symmetry).

Corollary (Nicaise 1987)

λj(G)
j2

≈ π2

|G|2
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Eigenvalue estimates with Dirichlet vertex conditions

Proposition (Plümer 2022)

lf G is a graph with finitely many edges of finite length, then

λ1(G; VD) ≥ 1

|G| Inr(G; VD)

where Inr(G; VD) := supx∈G d(x ,VD).

Proof.

Let f ∈ H1
0 (G; VD), x ∈ G, v ∈ VD, γ a geodesic between x , v. Then

f (x) = f (x)− f (v) =

∫
γ

f ′(y) dy

and

|f (x)|2 ≤ L(γ)

∫
γ

|f ′(y)|2 dy ≤ d(x ,VD)∥f ′∥2L2(G).

Therefore,

∥f ∥2L2(G) ≤
∫
G
d(x ,VD) dx∥f ′∥2L2(G) = |G|−

∫
G
d(x ,VD) dx∥f ′∥2L2(G)

≤ |G| Inr(G; VD)∥f ′∥2L2(G). 56 / 90



Lower estimate by diameter and nodal counting

Corollary

lf G is a graph with finitely many edges of finite length, then

λk(G) ≥
νk

|G|Diam(G) ,

where νk is # of nodal domains G1, . . . ,Gk of ψk ; in particular,

λ1(G) ≥
2

|G|Diam(G) .

Proof.

λk(G) = λ1(Gi ; ∂Gi ), hence

λk(G) ≥
1

|Gj | Inr(Gj ; ∂Gj)
.

By the pidgeonhole principle, there is j with |Gj | ≤ |G|
νk

.
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Lower estimate by mean distance

Corollary (Baptista–Kennedy–M. 2023)

lf G is a graph with finitely many edges of finite length, then

λ1(G) ≥
1

|G|−
∫
G×G d(x , y) dx dy

.

Proof.

Pick x0 ∈ G with −
∫
G d(x0, y)dy = −

∫
G×G d(x , y)dx dy .

Use Plümer’s estimate to deduce (for VD := {x0})

1 ≤ λ1(G; {x0})|G|−
∫
G×G

d(x , y)dx dy .

Consider the nodal domains G± of ∆G , assume wlog that x0 ∈ G+ and deduce from
domain monotonicity of the Dirichlet eigenvalues that

λ1(G) = λ1(G+; ∂G+) ≥ λ1(G; {x0})
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Lower estimate by avoidance diameter

The avoidance diameter of G is

avoid(G) := max
γ

min
x∈S1

d(γ(−x), γ(x))

where max is taken over all injective con-
tinuous γ : S1 → G.

G avoid(G)

trees 0

equilateral figure-8 graph L
4

equilateral flower graph on k edges L
2k

equilateral pumpkin graph on k edges L
k

Proposition (Berkolaiko–Kennedy–Kurasov–M. 2023:)

λ1(G) <
6|G|

avoid(G)3
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A homotopy lemma

Lemma

Let A be closed quadratic form with dom(A)
c
↪→ L2(X ;µ). Assume the associated

operator A on L2(X ;µ) to have one-dimensional null space spanned by some u.
If

ψ· : [0, 1] → D(a) \ {0} satisfies ψ0 = −ψ1 and

[0, 1] ∋ t 7→ (ψt , u) ∈ R is continuous

then the second lowest eigenvalue λ1(A) of A satisfies

λ1(A) ≤
A(ψt0)

∥ψt0∥
2
L2

for some t0 ∈ (0, 1).

In our relevant case: A(f ) =
∫
G |f ′|2 dx , u ≡ 1.

Proof.

Because (ψ0, u) = −(ψ1, u), there is t0 with (ψt0 , u) = 0. Now, use ψt0 as a test function
in the Rayleigh quotient.
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Sketch of the proof

Apply the homotopy lemma to

ψt := τγ(eiπt ), 1
2
avoid(G) − τγ(−eiπt ), 1

2
avoid(G), t ∈ [0, 2π),

where γ is the curve realizing the avoidance diameter and

τx,d(y) :=

{
d − d(x , y), if d(x , y) ≤ d ,

0, otherwise.

Then

λ1(G) ≤ max
t∈[0,1]

|G|
2∥τγ(eiπt ),avoid(G)∥2

≤ 6|G|
avoid(G)3 .
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1 Heat equation and heat kernels

2 Laplacians on metric graphs

3 Spectral geometry
Basic estimates in terms of total length
Alternative estimates using different quantities

4 Thermal geometry

5 Nonlinear diffusion
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Shape optimization wrt heat kernel?

Already seen:

If G,G′ are two different wirings over the same edge set,

pG
t (x , y) ≤ pG′

t (x , y) ∀x , y ∈ G

for all t ≥ 0 is impossible.

Idea: Consider the overall insulation wrt VD∫ ∞

0

∫
G

∫
G
pG;VD

t (x , y)dx dy dt.

Remark

Because pG
t ≥ 0, so is

∫ ∞
0

∫
G
∫
G pG

t (x, y) dx dy dt.

The Green function GG;VD is the Laplace transform of pG;VD

· (Exercise).

If VD = ∅, the overall insulation is always = ∞, because
∫
G
∫
G pG;VD

t (x, y) dx dy = |G| (Exercise).
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Path graphs maximize insulation

Theorem
1

12

|G|3

|E|3 ≤
∫ ∞

0

∫
G

∫
G
pG
t (x , y)dx dy dt ≤ 1

3
|G|3

Lower estimate is an equality iff G=

Upper estimate is an equality iff G=
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Proof (upper estimate)

∫∞
0

pG
t (x , y) dt is the Green’s function of G, i.e., the integral kernel of ∆−1.

Thus,
∫∞
0

∫
G
∫
G pG

t (x , y)dx dy dt = −
∫
G ∆−11(x)dx

Describe the integrated heat content in variational terms, following Pólya:

−
∫
G
(∆G;VD

)−11(x) dx = max
u∈H1

0 (G;VD)

∥u∥2L1
∥u′∥2

L2

because the Euler–Lagrange equation for

−∆G;VD

u = 1

is
1

2

∫
G
u′(x)h′(x) dx =

∫
G
h(x)dx , h ∈ H1

0 (G; VD)

Mimic Nicaise’ doubling trick.
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Proof (lower estimate)

Use again
∫∞
0

∫
G
∫
G pG

t (x , y) dx dy dt = max
u∈H1

0 (G;VD)

∥u∥2
L1

∥u′∥2
L2

Consider, as a test function, the function u∗ that satisfies −u∗′′
e = 1 with Dirichlet

conditions on each edge.

Check that
∥u∗

e ∥2L1
∥u∗′

e∥2L2
=

|e|3

12

and use Jensen.
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Landscape functions on metric graphs, after Filoche–Mayboroda

Theorem

Let VD ̸= ∅. Then each eigenpair (λ, φ) of −∆G;VD

(even of the magnetic Laplacian

∆G;VD

α !) satisfies

|φ(x)|
∥φ∥∞

≤ inf
δ>0

δ
[(

− λ1 + δ −
(
(−∆G;VD

)−11
)]

(x)
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Application to the heat kernel

Proposition

There exists C = C(G) with

pG;VD

t (x , y) ≤ C

[∑
k∈N

|λk |2e−tλk

]
(−∆G;VD

)−11(x)(−∆G;VD

)−11(y).

Example

If G =

Same estimates holds even for the heat kernel of the magnetic Laplacian!
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Proof (for general magnetic Laplacians)

Consider an ONB of eigenvectors of ∆G;VD

. Then

φk = λk(−∆G;VD

α )−1φk

and because et∆
G;VD

dominates et∆
G;VD

α

|φk | = |λk(−∆G;VD

α )−1φk | ≤ |λk |(−∆G;VD

)−1|φk | ≤ |λk |∥φk∥∞(−∆G;VD

)−11.

Bifulco–Kerner 2022: There exists C(G) such that ∥φk∥∞ ≤ C(G) for all k.
By Mercer,

pG;VD

t (x , y) =
∑
k∈N

e−tλkφk(x)φk(y)

≤ C(G)2
∑
k∈N

|λk |2e−tλk (−∆G;VD

)−11(x)(−∆G;VD

)−11(y).
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Unlike eigenfunctions, the torsion function can be computed explicitly

Exercise

Let G be equilateral (ℓe ≡ 1) and let v := (−∆G;VD

)−11, for VD ̸= ∅. Then the
restriction g := v|V : V → R is the unique solution of the system

g(v) = 0, v ∈ VD,

1

deg(v)

∑
w∼v

g(v)− g(w) =
1

2
, v ∈ V \ VD.
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Gradient of quadratic forms
Recall: given a closed quadratic form A with corresponding bilinear form a, the
associated operator A satisfies

a(f , h) = (−Af , h) ∀f ∈ D(A) and h ∈ D(a)}

Indeed, A is infinitely many times continuously differentiable, and in particular (Exercise)

A′(f )h = a(f , h) = (−Af , h)

. Then −A is the gradient of A: −A = ∂A.

Example

For the Dirichlet form A(f ) = 1
2

∫
Ω
|∇f (x)|2 dx , f ∈ H1

0 (Ω), there holds

A′(f )g =
∫
Ω
∇f (x)∇g(x) dx = −

∫
Ω
∆Ω;Df (x)g(x) dx : i.e., ∂A = −∆Ω;D.

Example

For all p > 1 Ap(f ) =
1
p

∫
G |∇f (x)|p dx , f ∈ W 1,p

0 (Ω), is differentiable with derivative

Ap
′(f )h =

∫
Ω

|∇f (x)|p−2∇f (x)∇g(x) dx
!
:= −

∫
G
∆Ω;D

p f (x)h(x) dx ,

i.e., −∂Ap is the p-Laplacian on Ω (with Dirichlet BCs).
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Nonlinear semigroups

Theorem (Brezis 1973)

Given a convex, lsc, proper, coercive energy A : L2(X ;µ) → [0,∞], the Cauchy problem
for

∂tu + ∂A(u) = 0

is well-posed.

⇝ for all initial data u0 there exists a solution

t 7→ u(t) =: e−∂Au0
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Long time behavior vs p-homogeneity

Let Ap be convex, lsc, proper, coercive and p-homogeneous:

we can consider

λ1,p := inf
u⊥Ker(Ap)

pA(u)

∥u∥p > 0;

u ⊥ Ker(Ap) is called eigenfunction of ∂A for the (variational) eigenvalue λ if

λ∥u∥p−2u = ∂Ap(u).
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Convergence to steady state vs p-homogeneity
If p = 2,

∥u(t)∥2 ≤ ∥u(0)∥2e−2λ1t

Theorem (Bungert–Burger 2020)

Let Ap be convex, lsc, proper, coercive and p-homogeneous, for p ≥ 1: then the solution
of ∂tu + ∂Ap(u) = 0 with u(0) ⊥ Ker(Ap) satisfies

∥u(t)∥2 ≤ 1

∥u(0)∥2−p + (p − 2)λ1,pt
if p ∈ (2,∞),

∥u(t)∥2 ≤ ∥u(0)∥2−p − (2− p)λ1,pt if p ∈ [1, 2).

Remark

In particular, for p < 2

∥u(t)∥2−p ≥ (2− p)λ1,p(Tex − t) and u(t) ≡ 0 ∀t ≥ Tex ,

where
Tex ≤ ∥u(0)∥2−p

(2− p)λ1,p
<∞.

Likewise: infinite extinction time if p > 2.
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Estimating λ1,p ≡ controlling long-time behavior. For Ω and p ̸= 2:

Dirichlet: Bhattacharya (1999)

Neumann: Brasco–Nitsch–Trombetti (2016)
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Prototypical Example

The p-Laplacian ∆G
p is (minus) the derivative −AG

p in L2(G) of the energy

Ap(f ) :=
1

p

∫
G
|f ′|p dx , f ∈ W 1,p(G) := C(G) ∩

⊕
e∈E

W 1,p(0, ℓe).

(⇝ continuity + nonlinear Kirchhoff-type vertex conditions)

∆G
p generates on L2(G) a nonlinear (Markovian) semigroup.

(Likewise if Dirichlet conditions are imposed on a vertex subset VD ⊂ V.)
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Eigenvalues of (p-)Laplacians on metric graphs

Proposition (Hofmann–Kennedy–M.–Plümer 2021)

−∆G
p has countably many eigenvalues 0 = λ0,p(G) ≤ λ1,p(G) ≤ . . .→ +∞:

λn,p(G) = (p − 1)

(
πp

|G|

)p

np + o(np) as n → ∞,

where πp := 2π
p sin(π

p
)
, p ∈ (1,∞).
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Bungert–Burger ⇒ If u(0) ⊥ 1, then

∥u(t)∥2 ≤ 1

∥u(0)∥2−p + (p − 2)λ1,pt
if p ∈ (2,∞),

∥u(t)∥2 ≤ ∥u(0)∥2−p − (2− p)λ1,pt if p ∈ [1, 2).

How fast/slow can convergence be?

Theorem (Del Pezzo–Rossi 2016; Berkolaiko–Kennedy–Kurasov–M. 2017)

Given a graph on E <∞ edges of finite length, for all p ∈ (1,∞)

(p − 1)
πp
p

|G|p ≤ λ1,p(G) ≤ (p − 1)
Epπp

p

|G|p , with equality iff G =

If additionally G is 2-connected:

λ1,p(G) ≥ 2p(p − 1)
πp
p

|G|p , with equality iff G =
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Kennedy–Kurasov–Malenová–M., On the spectral gap of a quantum graph, Ann.
Poincaré 2016

Berkolaiko–Kennedy–Kurasov–M., Edge connectivity and the spectral gap of
combinatorial and quantum graphs..., J. Phys. A 2017

Becker–Gregorio–M., Schrödinger and polyharmonic operators on infinite graphs,
JMAA 2021

Glück–M., Eventual Domination for Linear Evolution Equations, Math. Z. 2021
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Thank you for your attention!
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