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Ubi materia, ibi geometria

Even if Kepler wrote this in a particular context and physics of his
cosmography was wrong, the phrase appeared to have a deeper meaning.

With this motto in mind, here is the outline of the course:

Lecture I: Quantum graphs, where they come from and what they
are good for. Resonances and spectral gaps.

Lecture II: Quantum waveguides and layers. Spectral and scattering
properties coming from their geometry.

Lecture III: Taking quantum tunneling into account: leaky graphs
and soft waveguides.

Lecture IV: Graphs violating the time-reversal invariance, and what
that means for their spectral and transport properties.

Lecture V: Spectral optimization of graphs and waveguides. Effects
of magnetic fields. Summary and outlook.
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Where they came from: Pauling’s insight
The notion first appeared in early days of QM when Linus Pauling
suggested that the Kekulé pictures describing molecules of aromatic
hydrocarbons, like benzene, napfthalene, anthracene sketched here
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and others – ignoring the double edges marking the bond type – are
more than symbols and calculated spectra of such molecules with ∼10%
accuracy, a remarkable feat for such a primitive model.

To match the
electron wave functions at the vertices, he choose the simplest possible
way assuming that they are continuous and the sum of their derivatives
vanishes, that is, what people nowadays mostly call Kirchhoff conditions.

This is not the only choice, though. A formal justification of Kirchhoff
coupling was later proposed seventeen years later using a natural idea
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��q−→

K. Ruedenberg, C.W. Scherr: Free–electron network model for conjugated systems, I. Theory, J. Chem. Phys. 21 (1953),
1565–1581.
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Quantum graph rediscovery
After that quantum graphs were happily forgotten for several decades,
and persisted mostly as an – a bit obscure – textbook example.

The new inspiration came from the progress in solid state physics. Since
the 1980s the fabrication techniques improved allowing us to produce
structure so tiny and clean that the electron transport was coherent.

 

The left figure shows a demonstration of Aharonov-Bohm effect in ring of
diameter diameter 784nm made of gold wire of width 41nm, the right one
a ring-type heterostructure made of AlGaAs-GaAs.

R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz: Observation of h/e Aharonov-Bohm oOscillations in
normal-metal rings, Phys. Rev. Lett. 54 (1985), 2696–2699.

A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler: Energy spectra of quantum rings,
Nature 413 (2001), 822–825.

Quantum graphs appeared be very good models of such systems!
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Three decades later graphs are everywhere
Our graphs are metric. There is, of course, a relation to the much
older theory of discrete graphs born in 1736 when Leonhard Euler
answered the question about the seven bridges of Königsberg.

Unless stated otherwise, we use units in which ℏ = 2m = 1, etc.

There are numerous materials of which such graph-like systems are
constructed. We mentioned semiconductors or metals materials, one
can also use carbon nanotubes, etc.

Observed from the stationary point of view, it is not surprising that
properties of such systems can be successfully simulated by microwave
networks built of optical cables.

O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, L. Sirko: Experimental simulation of quantum
graphs by microwave networks, Phys. Rev. E69 (2004), 056205.

In addition to Schrödinger, graphs can also support Dirac operators.
Such models gained importance recently; the reason is that electron
motion in graphene can be described by massless Dirac equation.

W. Bulla, T. Trenkler : The free Dirac operator on compact and noncompact graphs, J. Math. Phys. 31 (1990),
1157–1163.
J. Bolte, J.M. Harrison: Spectral statistics for the Dirac operator on graphs, J. Phys. A: Math. Gen. 36 (2003),
2747–2769.
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And the list continues

Graphs are also used to describe other physical processes governed,
for example, by the wave or elasticity equation.

P. Freitas, J. Lipovský: Eigenvalue asymptotics for the damped wave equation on metric graphs, J. Diff. Eqs 263
(2013), 2780–2811.

J.-C. Kiik, P. Kurasov, M. Usman: On vertex conditions for elastic systems, Phys. Lett. A379 (2015), 1871–1876.

Other than linear equations on graphs are also of interest, e.g., the
nonlinear Schrödinger used as effective description of many-particle
systems, and others. See Riccardo’s lectures at this school, and

D. Noja: Nonlinear Schrödinger equation on graphs: recent results and open problems, Phil. Trans. Roy. Soc.
A372 (2014), 20130002.

M. Cavalcante: The Korteweg-de Vries equation on a metric star graph, ZAMP 69 (2018), 124.

Graphs proved to be a versatile tool to study quantum chaos.

T. Kottos, U. Smilansky: Quantum chaos on graphs, Phys. Rev. Lett. 79 (1997), 4794–4797.

The graph literature is extensive indeed; the best source I can
recommend to start with are the monographs

G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

A. Kostenko, N. Nicolussi: Laplacians on Infinite Graphs, Mem. EMS, Berlin 2022.
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Vertex coupling

After setting the scene, let us return the concept of quantum graph,
in particular to matching the wave functions.

Recall that to define a QM Hamiltonian, in general it is not sufficient to
specify its differential symbol. To qualify as an observable, the operator
must be self-adjoint, H = H∗, which for an unbounded operator is a
considerably stronger requirement than mere symmetry, H ⊂ H∗.

In physicist’s language this means to demand that that the probability
current must be preserved. Let us illustrate that on an example:
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@ q
The most simple case is a star graph with
the state Hilbert space H =

⊕n
j=1 L

2(R+)
and the particle Hamiltonian acting on H
as ψj 7→ −ψ′′

j
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Vertex coupling
Since the operator is of second order, the boundary condition involve
the values of functions and the first outward derivatives at the vertex.

These boundary values can be written as columns, Ψ(0) := {ψj(0)} and
Ψ′(0) := {ψ′

j(0)}, the entries understood as left limits at the endpoint;
then the most general self-adjoint matching conditions are of the form

AΨ(0) + BΨ′(0) = 0,

where the n × n matrices A,B satisfy the conditions

rank (A,B) = n
AB∗ is Hermitean

V. Kostrykin, R. Schrader: Kirhhoff’s rule for quantum wires, J. Phys. A: Math. Gen. 32 (1999), 595–630.

F.S.Rofe-Beketov: Self-adjoint extensions of differential operators in a space of vector-valued functions, Teor.
Funkcii, Funkcional. Anal. Prilozh. 8 (1969), 3–24 (in Russian).

Naturally, these conditions are non-unique, as A,B can be replaced by
CA,CB with a regular C . This non-uniqueness can be removed by using

(U − I )Ψ(0) + i(U + I )Ψ′(0) = 0,

where U is a unitary n × n matrix.
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Vertex coupling
The claim is easy to verify. To see that it is enough to express the
squared norms ∥Ψ(0)± iℓΨ′(0)∥2

Cn and subtract them from each other;
the difference is nothing but the boundary form,

(Hψ,ψ)− (ψ,Hψ) =
n∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0,

which has to vanish to make the operator self’adjoint.

Note that each term of the sum is, up to the factor 1
2 , nothing but the

probability current in the jth edge, taken in the outward direction.

As a consequence, the two vectors having the same norm must be related
by an n × n unitary matrix; this gives (U − I )Ψ(0) + iℓ(U + I )Ψ′(0) = 0.

It seems that we have one more parameter, but it is not important because
the matrices corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′
.

Thus we can set ℓ = 1, which means just a choice of the length scale.
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Why we should care about different couplings?

The answer to this question is: from the simple reason – because they
describe a different physics. We will encounter various manifestation of
this fact but let us illustrate the claim on the example of star graph of
n edges, denoting its different Hamiltonians as HU .

One of them is HD corresponding to U = −I , in other words, each edge
component of HU is a halfline Laplacian with Dirichlet boundary condition,
ψj(0) = 0. The spectrum of these operators is easily found, it implies that
σ(HD) = R+ of multiplicity n.

For any U we have σess(HU) = R+, because (HU − z)−1 − (HD − z)−1

is an operator of finite rank (equal to n) but in addition, there may be
negative eigenvalues.

Question: How many of them do we have?

Answer: Their number coincides with the number of eigenvalues of U in
the open upper complex halfplane. Indeed, the matching condition can
diagonalized, and on the appropriate subspaces of

⊕n
j=1 L

2(R+) we get n

Robin problems, ϕ′j(0) + tan
αj

2 ϕj(0) = 0 for the eigenvalue eiαj of U.
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Examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′
j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α = ∞ gives the Dirichlet U = −I

On the other hand, α = 0 is the Kirchhoff condition representing a
‘free motion’. The name is unfortunate, but it stuck.

Similarly, U = I − 2
n−iβJ describes the δ′s coupling,

ψ′
j (0) = ψ′

k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β = ∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.

Another generalization of the 1D δ′ interaction is the δ′ coupling:
n∑

j=1

ψ′
j (0) = 0, ψj(0)− ψk(0) =

β

n
(ψ′

j (0)− ψ′
k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I − 2

n+iαJ and Neumann edge decoupling for β = ∞.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 11 -



Examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′
j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α = ∞ gives the Dirichlet U = −I

On the other hand, α = 0 is the Kirchhoff condition representing a
‘free motion’. The name is unfortunate, but it stuck.

Similarly, U = I − 2
n−iβJ describes the δ′s coupling,

ψ′
j (0) = ψ′

k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β = ∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.

Another generalization of the 1D δ′ interaction is the δ′ coupling:
n∑

j=1

ψ′
j (0) = 0, ψj(0)− ψk(0) =

β

n
(ψ′

j (0)− ψ′
k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I − 2

n+iαJ and Neumann edge decoupling for β = ∞.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 11 -



Examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′
j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α = ∞ gives the Dirichlet U = −I

On the other hand, α = 0 is the Kirchhoff condition representing a
‘free motion’. The name is unfortunate, but it stuck.

Similarly, U = I − 2
n−iβJ describes the δ′s coupling,

ψ′
j (0) = ψ′

k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β = ∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.

Another generalization of the 1D δ′ interaction is the δ′ coupling:
n∑

j=1

ψ′
j (0) = 0, ψj(0)− ψk(0) =

β

n
(ψ′

j (0)− ψ′
k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I − 2

n+iαJ and Neumann edge decoupling for β = ∞.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 11 -



Examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′
j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α = ∞ gives the Dirichlet U = −I

On the other hand, α = 0 is the Kirchhoff condition representing a
‘free motion’. The name is unfortunate, but it stuck.

Similarly, U = I − 2
n−iβJ describes the δ′s coupling,

ψ′
j (0) = ψ′

k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β = ∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.

Another generalization of the 1D δ′ interaction is the δ′ coupling:
n∑

j=1

ψ′
j (0) = 0, ψj(0)− ψk(0) =

β

n
(ψ′

j (0)− ψ′
k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I − 2

n+iαJ and Neumann edge decoupling for β = ∞.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 11 -



Meaning of the vertex coupling
Ruedenberg and Scher idea can be made rigorous. In addition, any
self-adjoint vertex coupling can by approximated by singular Schrödinger
operators on a Neumann

– Dirichlet is a rather different story! – networks
according to the following scheme:

 

P.E., O. Post: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin
branched manifolds, Commun. Math. Phys. 322 (2013), 207–227.

This you will learn from Olaf’s lectures, here my concern is different.

I only note that the above result have an existence meaning. Pragmatically,
it is reasonable to choose the coupling ad hoc to fit the physics of the
problem. And at least some non-Kirchhoff couplings may appear useful.
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Transport in quantum graphs
Comparing to usual Schrödinger operators, their graph counterparts
have some properties similar, and some very different, depending on
the topology and geometry of the graph.

On infinite graphs, the spectrum has typically has an (absolutely)
continuous spectral component – although there are exceptions – and
as a consequence, particles ‘living’ on such a graph may be transported.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states in the spectral gaps.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 13 -



Transport in quantum graphs
Comparing to usual Schrödinger operators, their graph counterparts
have some properties similar, and some very different, depending on
the topology and geometry of the graph.

On infinite graphs, the spectrum has typically has an (absolutely)
continuous spectral component – although there are exceptions – and
as a consequence, particles ‘living’ on such a graph may be transported.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states in the spectral gaps.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 13 -



Transport in quantum graphs
Comparing to usual Schrödinger operators, their graph counterparts
have some properties similar, and some very different, depending on
the topology and geometry of the graph.

On infinite graphs, the spectrum has typically has an (absolutely)
continuous spectral component – although there are exceptions – and
as a consequence, particles ‘living’ on such a graph may be transported.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states in the spectral gaps.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 13 -



Transport in quantum graphs
Comparing to usual Schrödinger operators, their graph counterparts
have some properties similar, and some very different, depending on
the topology and geometry of the graph.

On infinite graphs, the spectrum has typically has an (absolutely)
continuous spectral component – although there are exceptions – and
as a consequence, particles ‘living’ on such a graph may be transported.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states in the spectral gaps.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 13 -



Transport in quantum graphs
Comparing to usual Schrödinger operators, their graph counterparts
have some properties similar, and some very different, depending on
the topology and geometry of the graph.

On infinite graphs, the spectrum has typically has an (absolutely)
continuous spectral component – although there are exceptions – and
as a consequence, particles ‘living’ on such a graph may be transported.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states in the spectral gaps.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 13 -



Transport in quantum graphs
Comparing to usual Schrödinger operators, their graph counterparts
have some properties similar, and some very different, depending on
the topology and geometry of the graph.

On infinite graphs, the spectrum has typically has an (absolutely)
continuous spectral component – although there are exceptions – and
as a consequence, particles ‘living’ on such a graph may be transported.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states in the spectral gaps.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 13 -



Resonances in quantum graphs

Our first topic will be resonances on graphs consisting of a compact
‘core’ and semiinfinite ‘leads’. To begin with, some general observations:

There are different definitions of what a resonance is; the to most
common identify it with a complex singularity of either the resolvent
of the Hamiltonian or of the on-shell scattering matrix.

They are often the same things but the identification has to be
checked in each particular case; keep in mind that the concepts are
different: the first case is a property of a single operator, while in
scattering we compare Hamiltonian H to the free operator H0.

In both cases the singularity is situated on the ‘unphysical sheet’ of
energy, that, in an analytical continuation of the resolvent/S-matrix.

In QM, resonances most often come from perturbations of embedded
eigenvalues; the nontrivial topology of quantum graphs means that
they exhibit resonances frequently.
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Resonances in quantum graphs
Concerning the last claim, in view of a nontrivial topology, the unique
continuation property does not hold in general

, in particular, a quantum
graphs Hamiltonian may have compactly supported eigenfunctions as this
example shows:

Courtesy: Peter Kuchment

The conditions that make their existence possible, for instance, rational
relations between the edge lengths, may be violated; such perturbations
are a natural mechanism to create resonances.

Let us consider a graph Γ consisting of vertices V = {xj : j ∈ I}, finite
edges L = {Ljn : (xj , xn) ∈ IL ⊂ I × I}, and semiinfinite edges (leads)
L∞ = {Lj∞ : xj ∈ IC}. The corresponding state Hilbert space is

H =
⊕
Lj∈L

L2([0, lj ])⊕
⊕

Lj∞∈L∞

L2([0,∞)) ;

its elements we write as columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T.
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A useful trick

In the absense of external fields, the Hamiltonian acts as − d2

dx2 on
each link on H2

loc functions satisfying the boundary conditions

(Uj − I )Ψj + i(Uj + I )Ψ′
j = 0

characterized by unitary matrices Uj at the vertices Xj

. A useful trick is to
replace Γ ‘flower-like’ graph with one vertex by putting all the vertices to a
single point,

l1

l2l3

l4

lN

Its degree is, of course, 2N +M, where N := cardL and M := cardL∞.

The coupling in the ‘master vertex’ is then described by the condition

(U − I )Ψ + i(U + I )Ψ′ = 0,

where the unitary (2N +M)× (2N +M) matrix U is block-diagonal with
the blocks Uj reflecting the true topology of Γ.
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Comparing the different resonance definitions
Consider first the resolvent resonances. A powerful method method to
reveal them is based on complex scaling.

The method is common in atomic and
molecular physics, recall e.g. helium
autoionization effect; it is illustrated
in the attached picture.

Source: wikipedia

Quantum graphs we consider are well suited for application of an exterior
complex scaling. Looking for complex eigenvalues of the scaled operator
we preserve the compact part of the graph using the wave function Ansatz
fj(x) = aj sin kx + bj cos kx on the j-th internal edge.

On the other hand, functions on the semi-infinite edges are scaled by
gjθ(x) = eθ/2gj(xe

θ) with an imaginary θ; the poles of the resolvent on
the second sheet become ‘uncovered’ for θ large enough. The ‘exterior’
boundary values of gj(x) = gje

ikx referring to energy k2 thus equal to

gj(0) = e−θ/2gj , g ′
j (0) = ike−θ/2gj .
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Resolvent and scattering resonances
Substituting these boundary values to the matching condition we get[

(U − I )C1(k) + ik(U + I )C2(k)
]
ψ = 0,

where ψ = (a1, b1, a2, . . . , bN , e
−θ/2g1, . . . , e

−θ/2gM)T and Cj(k) are block-
diagonal, Cj := diag (C

(1)
j (k),C

(2)
j (k), . . . ,C

(N)
j (k), i j−1IM×M) with

C
(j)
1 (k) =

(
0 1

sin klj cos klj

)
, C

(j)
2 (k) =

(
1 0

− cos klj sin klj

)

Naturally, this systems of linear equations is solvable if and only if

det [(U − I )C1(k) + ik(U + I )C2(k)] = 0.

Passing to scattering resonances, we choose a combination of two planar
waves, gj = cje

−ikx + dje
ikx , as an Ansatz on the external edges; we ask

about poles of the matrix S = S(k) which maps the amplitudes of the
incoming waves, c = {cn}, into the amplitudes of their outgoing
counterparts, d = {dn}, through the linear relation d = Sc .
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Resolvent and scattering resonances
Matching the functions at the vertices where the leads are attached,
we get

(U − I )C1(k)



a1

b1

a2

.

.

.

bN
c1 + d1

.

.

.

cM + dM


+ ik(U + I )C2(k)



a1

b1

a2

.

.

.

bN
d1 − c1

.

.

.

dM − cM


= 0

It is an easy exercise to eliminate aj , bj from this system arriving at a
system of M equations that yields the map S−1d = c ; this system is not
solvable, detS−1 = 0, under the same condition we have obtained above.
This allows us to conclude:

Proposition

The two above resonance notions, the resolvent and scattering one, are
equivalent for quantum graphs.

P.E., J. Lipovský: Resonances from perturbations of quantum graphs with rationally related edges, J. Phys. A: Math.
Theor. 43 (2010), 105301.
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Effective coupling on the compact subgraph

The problem can be reduced to the graph core only rephrasing it as a
non-selfadjoint spectral problem on the ‘flower’ without the M-fold ‘stalk’.

To this aim, we write U in the block form, U =

(
U1 U2

U3 U4

)
, where U1 in the

2N × 2N matric referring to the compact subgraph, U4 is the M ×M
matrix related to the exterior part, and the off-diagonal U2 and U3 are
rectangular matrices connecting the two.

Eliminating the external part leads to an effective coupling on the compact
subgraph expressed by the condition

(Ũ(k)− I )(f1, . . . , f2N)
T + i(Ũ(k) + I )(f ′1 , . . . , f

′
2N)

T = 0,

where the corresponding coupling matrix

Ũ(k) := U1 − (1− k)U2[(1− k)U4 − (k + 1)I ]−1U3

is obviously energy-dependent and, in general, non-unitary.

This is another nice illustration of a simple formula know already to Schur,
often attributed to Feshbach, or Grushin, or other people.
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Example: a loop with two leads

g1(x) g2(x)

f1(x)

f2(x)

0
l1
l2

In each vertex we use a four-parameter family of boundary conditions
assuming continuity on the loop, f1(0) = f2(0), together with

f1(0) = α−1
1 (f ′1 (0) + f ′2 (0)) + γ1g

′
1(0),

g2(0) = −γ̄2(f
′

1 (l1) + f ′2 (l2)) + α̃−1
2 g ′

2(0),

and similarly in the other vertex with αj ∈ R, α̃j ∈ R, and γj ∈ C.

Writing the loop edge lengths as l1 = l(1− λ) and l2 = l(1 + λ) with
λ ∈ [0, 1], which effectively means shifting one of the connections points
around the loop as λ is changing, one arrives at the resonance condition

sin kl(1 − λ) sin kl(1 + λ) − 4k2β−1
1 (k)β−1

2 (k) sin2 kl + k[β−1
1 (k) + β−1

2 (k)] sin 2kl = 0,

where β−1
i (k) := α−1

i + ik|γi |2

1−ikα̃−1
i

.
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Example: a loop with two leads

It is easy to see that there are embedded eigenvalues if the parameter λ
characterizing the shift is rational, and also that the singularities become
complex if we move away from such a point; we can then solve the
resonance condition perturbatively.

For larger changes of λ one can still solve the condition numerically to
determine the pole trajectories. In order to make the dependence on λ
visible, we color code them, moving from red (λ = 0) to blue (λ = 1).
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n = 2 and the same parameter values
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Another example: a cross-shaped graph

g1(x) g2(x)
f1(x)

f2(x)

l1 = l (1 − λ)

l2 = l (1 + λ)

0

This time we restrict ourselves to the δ coupling combined with Dirichlet
conditions at the loose ends; this yields the resonance condition

2k sin 2kl + (α− 2ik)(cos 2klλ− cos 2kl) = 0

The examples correspond to resonances associated with the embedded
eigenvalue for n = 2 and α = 10, 1, 2.596, respectively.
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The last one shows an avoided crossing of resonance trajectories, the
last two also illustrate an effect called quantum holonomy.

T. Cheon, A. Tanaka: New anatomy of quantum holonomy, EPL 85 (2009), 20001.
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High-energy asymptotics
Now something more general. We know that at high energies the
number of bound states is give semiclassically by the Weyl formula

; in
open systems like our graphs with leads the same is true for the number
of eigenvalues and resonances taken together.

Brian Davies and Sasha Pushnitski inspected the number of eigenvalues
and resonances in a circle of radius R and made an intriguing observation:
if the coupling is Kirchhoff and some vertices are balanced, meaning that
they connect the same number of internal and external edges, then the
leading term in the asymptotics may be less than Weyl formula prediction.

E.B. Davies, A. Pushnitski: Non-Weyl resonance asymptotics for quantum graphs, Anal. PDE 4(5) (2011), 729–756.

To understand what is happening it is useful to look at graphs with a
general vertex coupling. Denoting e±j := e±iklj and e± := ΠN

j=1e
±
j , we

can write the secular equation determining the singularities is

0 = det
{1

2
[(U−I ) + k(U+I )]E1(k) +

1

2
[(U−I ) + k(U+I )]E2 + k(U+I )E3

+ (U−I )E4 + [(U−I ) − k(U+I )] diag (0, . . . , 0, IM×M)
}
,
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To understand what is happening it is useful to look at graphs with a
general vertex coupling. Denoting e±j := e±iklj and e± := ΠN

j=1e
±
j , we

can write the secular equation determining the singularities is

0 = det
{1

2
[(U−I ) + k(U+I )]E1(k) +

1

2
[(U−I ) + k(U+I )]E2 + k(U+I )E3

+ (U−I )E4 + [(U−I ) − k(U+I )] diag (0, . . . , 0, IM×M)
}
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High-energy asymptotics
where Ei (k) = diag

(
E

(1)
i ,E

(2)
i , . . . ,E

(N)
i , 0, . . . , 0

)
, i = 1, 2, 3, 4, consists

of a trivial M ×M part and N nontrivial 2× 2 blocks

E
(j)
1 =

(
0 0

−ie+
j e+

j

)
, E

(j)
2 =

(
0 0

ie−j e−j

)
, E

(j)
3 =

(
i 0

0 0

)
, E

(j)
4 =

(
0 1

0 0

)

Fortunately, mathematics is eternal; we have an almost century old result:

Theorem

Let F (k) =
∑n

r=0 ar (k) e
ikσr , where ar (k) are rational functions of the

complex variable k with complex coefficients, and the numbers σr ∈ R
satisfy σ0 < σ1 < · · · < σn. Let us assume that limk→∞ a0(k) ̸= 0 and
limk→∞ an(k) ̸= 0. Then there are a compact Ω ⊂ C, real numbers mr

and positive Kr , r = 1, . . . , n, such that the zeros of F (k) outside Ω lie
in the logarithmic strips bounded by the curves −Im k +mr log |k| = ±Kr

and the counting function of the zeros behaves in the limit R → ∞ as

N(R,F ) =
σn − σ0

π
R +O(1).

R.E. Langer: On the zeros of exponential sums and integrals, Bull. Amer. Math. Soc. 37 (1931), 213–239.
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Application of Langer theorem
Rewriting the secular equation as F (k) = 0, we need to find the senior
and junior coefficients; by a straightforward computation one can find
that e± = e±ikV , where V :=

∑N
j=1 lj is the size of the graph core.

Lemma

e± =
(
i
2

)N
det [(Ũ(k)− I )± k(Ũ(k) + I )] with Ũ(k) defined above.

Theorem

Given a quantum graph (Γ,HU) with finitely many edges and the vertex
coupling given by matrices Uj , the resonance counting function behaves as

N(R,F ) =
2W

π
R +O(1) for R → ∞,

where W is the effective size of Γ satisfying 0 ≤ W ≤ V :=
∑N

j=1 lj .
Moreover, W < V (graph is non-Weyl) if and only there is a vertex such
that the matrix Ũj(k) has an eigenvalue (1− k)/(1+ k) or (1+ k)/(1− k).

E.B. Davies, P.E., J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A:
Math. Theor. 43 (2010), 474013.
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E.B. Davies, P.E., J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A:
Math. Theor. 43 (2010), 474013.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 26 -



Application of Langer theorem
Rewriting the secular equation as F (k) = 0, we need to find the senior
and junior coefficients; by a straightforward computation one can find
that e± = e±ikV , where V :=

∑N
j=1 lj is the size of the graph core.

Lemma

e± =
(
i
2

)N
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Permutation-invariant couplings
Vertex couplings invariant w.r.t. edge permutations are described by
matrices Uj = ajJ + bj I , where number aj , bj ∈ C such that |bj | = 1
and |bj + ajdeg vj | = 1; matrix J has all the entries equal to one. Note
that both the δ and δ′s are particular cases of such a coupling.

For a vertex with p internal and q external edges and such a coupling
Uj , the effective matrix matrix Ũj(k) is easily calculated; this allows us
to make the following conclusion:

Corollary

If (Γ,HU) has a vertex with a permutation-invariant coupling which is
balanced, p = q, the graph is non-Weyl if and only if the coupling at
this vertex is either of Kirchhoff or anti-Kirchhoff type,

fj = fn, ∀j , n ≤ 2p,

2p∑
j=1

f ′j = 0 or f ′j = f ′n , ∀j , n ≤ 2p,

2p∑
j=1

fj = 0

If one drops the requirement of permutation symmetry, it is possible to
construct examples of non-Weyl graphs in which no vertex is balanced.
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What is the cause of a non-Weyl asymptotics?
We want to show that (anti-)Kirchhoff conditions at balanced vertices
are easy to decouple diminishing thus effectively the graph size.

Γ0

U (2) U (1)

l0

Suppose that a balanced vertex v1 connects p internal edges of the same
length l0 (we can always add ‘dummy’ Kirchhoff vertices) and p external
edges, coupled by a U(1) = aJ2p×2p + bI2p×2p. The coupling to the rest of
the graph, denoted as Γ0, is described by a q × q matrix U(2) with q ≥ p.

The idea is to use a unitary equivalence. Given a unitary p × p matrix V
we define V (1) := diag (V ,V ) and V (2) := diag (I(q−p)×(q−p),V ), then it
is straightforward to check that the original graph Hamiltonian is unitarily
equivalent to the one in which matrices U(1) and U(2) are replaced by
[V (1)]−1U(1)V (1) and [V (2)]−1U(2)V (2), respectively.

If the columns of V are orthonormal eigenvectors of U(1), beginning with
1√
p (1, 1, . . . , 1)

T, then [V (1)]−1U(1)V (1) decouples then into 2× blocks.
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What is the cause of a non-Weyl asymptotics?

The first one of those corresponds to the symmetrization of all the
external uj ’s and internal fj ’s, thus leading to the 2× 2 coupling matrix
U2×2 = apJ2×2 + bI2×2; in the complement the internal and external edges
are separated satisfying Robin conditions, (b − 1)vj(0) + i(b + 1)v ′j (0) = 0
and (b − 1)gj(0) + i(b + 1)g ′

j (0) = 0 for j = 2, . . . , p.

The ‘overall’ Kirchhoff/anti-Kirchhoff condition at v1 is transformed
into the ‘line’ Kirchhoff/anti-Kirchhoff condition in the subspace of
permutation-symmetric functions, and since this is no coupling at all
(recall that anti-Kirchhhoff and Kirchhoff on line are unitarily equivalent),
this causes non-Weyl behavior by effectively reducing the graph size by l0.

In all the other cases the point interaction corresponding to the matrix
apJ2×2 + bI2×2 is nontrivial, and consequently, the graph size is preserved.

Note that similar trick can used in analysis of tree graphs rephrasing the
task as an investigation of a family of problems of the line.

A.V. Sobolev, M.Z. Solomyak: Schrödinger operator on homogeneous metric trees: spectrum in gaps, Rev. Math. Phys.
14 (2002), 421–467.
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Effective size is a global property

One may ask whether considering the effect of each balanced vertex
separately allows to to determine the effective size

. It is not the case, as
the following simple example of Kirchhoff graph Γn shows:

l

l

l

l

l

The symmetry allows to decompose the system w.r.t. the cyclic rotation
group Zn into segments characterized by numbers ω satisfying ωn = 1; the
resonance condition then reads −2(ω2 + 1) + 4ωe−ikℓ = 0. Using is, we
easily find that the effective size of Γn is

Wn =

{
nℓ/2 if n ̸= 0 (mod4),

(n − 2)ℓ/2 if n = 0 (mod4).

Note also that one can demonstrate non-Weyl behavior of graph
resonances experimentally in a model using microwave networks:

M.  Lawniczak, J. Lipovský, L. Sirko: Non-Weyl microwave graphs, Phys. Rev. Lett. 122 (2019), 140503.
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Periodic graphs
Let us no pass to graphs which are truly infinite. There is a number
of interesting cases here; we restrict our attention to periodic graphs, of a
great importance if we think of using graphs to model material structure.

The basic method to deal with them is the same as for other periodic
system in QM, namely to apply to the Hamiltonian the Bloch or Floquet
decomposition writing it as a direct integral

H =

∫
Q∗

H(θ) dθ

where the fiber operator H(θ) acts on L2(Q), where Q ⊂ Rd is period
cell of the graph and the quasimomentum θ runs through the dual cell
Q∗ of the lattice usually called the Brillouin zone.

Bloch decomposition is commonly used to prove that the spectrum of H

is absolutely continuous
has a band-and-gap structure

M.Sh. Birman, T.A. Suslina: A periodic magnetic Hamiltonian with a variable metric. The problem of absolute
continuity, St. Petersburg Math. J. 11 (2000), 203–232.
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Periodic graphs
For quantum graphs, however, the spectrum of H is not necessarily
absolutely continuous since they may exhibit flat bands coming from the
mentioned violation of the unique continuation property. There are also
other differences which we will mention below.

Let us begin with a very simple example, a ring chain graph

assuming that adjacent rings, supposed to be of perimeter 2π, are
connected through a δ coupling of strength α

Take the Ansatz ψL(x) = e−iAx(C+
L eikx + C−

L e−ikx) for x ∈ [−π/2, 0]
and energy E := k2 ̸= 0, and similarly for the other three components;

for E < 0 we put instead k = iκ with κ > 0.

The functions have to be matched through (a) the δ-coupling and
(b) Floquet conditions. This yields equation for the phase factor eiθ,

sin kπ
(
e2iθ − 1

2η(k)e
iθ + 1

)
= 0,
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Ring chain graphs

η(k) := 4 cos kπ +
α

k
sin kπ.

We see that the system has flat bands, that is, infinitely degenerate
eigenvalues n2, n ∈ Z

. The absolutely continuous part of the spectrum
comes from the second factor.

It yields the condition |η(k)| ≤ 4. Its solution can be found graphically:

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

There is an infinite number of gaps provided α ̸= 0, of asymptotically
constant widths on the energy scale, and one negative band if α < 0.

Note that, up to a factor 1
2 , this nothing but the spectrum of the Kronig-

Penney model as it is clear from the mirror symmetry of the chain.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 33 -



Ring chain graphs

η(k) := 4 cos kπ +
α

k
sin kπ.

We see that the system has flat bands, that is, infinitely degenerate
eigenvalues n2, n ∈ Z. The absolutely continuous part of the spectrum
comes from the second factor.

It yields the condition |η(k)| ≤ 4. Its solution can be found graphically:

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

There is an infinite number of gaps provided α ̸= 0, of asymptotically
constant widths on the energy scale, and one negative band if α < 0.

Note that, up to a factor 1
2 , this nothing but the spectrum of the Kronig-

Penney model as it is clear from the mirror symmetry of the chain.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 33 -



Ring chain graphs

η(k) := 4 cos kπ +
α

k
sin kπ.

We see that the system has flat bands, that is, infinitely degenerate
eigenvalues n2, n ∈ Z. The absolutely continuous part of the spectrum
comes from the second factor.

It yields the condition |η(k)| ≤ 4. Its solution can be found graphically:

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

There is an infinite number of gaps provided α ̸= 0, of asymptotically
constant widths on the energy scale, and one negative band if α < 0.

Note that, up to a factor 1
2 , this nothing but the spectrum of the Kronig-

Penney model as it is clear from the mirror symmetry of the chain.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 33 -



Ring chain graphs

η(k) := 4 cos kπ +
α

k
sin kπ.

We see that the system has flat bands, that is, infinitely degenerate
eigenvalues n2, n ∈ Z. The absolutely continuous part of the spectrum
comes from the second factor.

It yields the condition |η(k)| ≤ 4. Its solution can be found graphically:

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

There is an infinite number of gaps provided α ̸= 0, of asymptotically
constant widths on the energy scale, and one negative band if α < 0.

Note that, up to a factor 1
2 , this nothing but the spectrum of the Kronig-

Penney model as it is clear from the mirror symmetry of the chain.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 33 -



Ring chain graphs

η(k) := 4 cos kπ +
α

k
sin kπ.

We see that the system has flat bands, that is, infinitely degenerate
eigenvalues n2, n ∈ Z. The absolutely continuous part of the spectrum
comes from the second factor.

It yields the condition |η(k)| ≤ 4. Its solution can be found graphically:

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

There is an infinite number of gaps provided α ̸= 0, of asymptotically
constant widths on the energy scale, and one negative band if α < 0.

Note that, up to a factor 1
2 , this nothing but the spectrum of the Kronig-

Penney model as it is clear from the mirror symmetry of the chain.
P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 33 -



Local perturbations: a bent chain

We have mentioned that local perturbations in general give rise to
eigenvalues in the gaps. We shall return to the this question later, for
the moment we mention just one example.

It is related to the previous model with α ̸= 0: let us assume we perturb it
by bending the chain, which means shifting the position of a single vertex.

Denote the Hamiltonian as Hϑ. We note that the flat bands (coinciding
with the upper or lower edges of ac bands) are independent of ϑ.

From the general principles we have at most to eigenvalues in each gap,
because H±

ϑ and H±
0 have a common symmetric restriction with deficiency

indices (2, 2). Furthermore, the mirror symmetry allows us to treat the
even and odd parts separately, that is, the halfchain with the Neumann
and Dirichlet cut, respectively.
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Example: bent-chain spectrum for α = 3
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for the even and odd part of the operator, H±
ϑ , respectively.

We see that the eigenvalues in gaps may be absent but only at rational
values of ϑ and never simultaneously. Similar pictures we get for other
values of α, the dotted lines mark (real values) of resonance positions.

P. Duclos, P.E., O. Turek: On the spectrum of a bent chain graph, J. Phys. A: Math. Theor. 41 (2008), 415206.
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Periodic graphs: the number of gaps
We have seen that the spectrum may have no gaps but also an infinite
number of them. Let us now ask whether there may be ‘just a few’ gaps.

Let us recall that for ‘ordinary’ Schrödinger operators the dimension
is known to be decisive:systems which are Z-periodic have generically
an infinite number of open gaps, while Zd -periodic systems with d ≥ 2
have only finitely many open gaps

This is the celebrated Bethe-Sommerfeld conjecture, rather plausible but
mathematically quite hard, to which we have nowadays an affirmative
answer in a large number of cases

L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457–450.

Question: How the situation looks for quantum graphs which, in a sense,
are ‘mixing’ different dimensionalities?

G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

The literature says that – while the situation is similar – the finiteness
of the gap number is not a strict law, and topology is the reason.
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Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can be
created by decorating its vertices by copies of a fixed compact graph

.
This fact was observed first in the combinatorial graph context,

J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), 253–262.

and the argument extends easily to metric graphs we consider here

Courtesy: Peter Kuchment

Thus, instead of ‘not a strict law’, the question rather is whether
it is a ‘law’ at all: do infinite periodic graphs having a finite nonzero
number of open gaps exist? From obvious reasons we would call them
Bethe-Sommerfeld graphs.
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The answer depends on the vertex coupling
Recall that self-adjointness requires the matching conditions
(U − I )ψ + i(U + I )ψ′ = 0 , where ψ, ψ′ are vectors of values and
derivatives at the vertex of degree n and U is an n × n unitary matrix

The condition can be decomposed into Dirichlet, Neumann, and Robin
parts corresponding to eigenspaces of U with eigenvalues −1, 1, and
the rest, respectively; if the latter is absent we call such a coupling
scale-invariant. As an example, one can mention the Kirchhoff coupling.

Theorem

An infinite periodic quantum graph does not belong to the Bethe-
Sommerfeld class if the couplings at its vertices are scale-invariant.

P.E., O. Turek: Periodic quantum graphs from the Bethe- Sommerfeld perspective, J. Phys. A: Math. Theor. 50 (2017),
455201.

Worse than that, it was shown that in a ‘typical’ periodic graph the
probability of being in a band or gap is ̸= 0, 1.

R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013),
130404.
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The existence

Nevertheless, the answer to our question is affirmative:

Theorem

Bethe-Sommerfeld graphs exist.

It is sufficient, of course, to demonstrate an example. With this aim
we are going to revisit the model of a rectangular lattice graph with
a δ coupling in the vertices introduced in

P.E.: Contact interactions on graph superlattices, J. Phys. A: Math. Gen. 29 (1996), 87–102.

P.E., R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53 (1996), 7275–7286.

q q q qa

bq q q qq q q qq q q q
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Spectral condition

The Bloch analysis is not difficult in this case. In particular, we find
that a number k2 > 0 belongs to a gap if and only if k > 0 satisfies the
gap condition which reads

2k

[
tan

(
ka

2
− π

2

⌊
ka

π

⌋)
+ tan

(
kb

2
− π

2

⌊
kb

π

⌋)]
< α for α > 0

and

2k

[
cot

(
ka

2
− π

2

⌊
ka

π

⌋)
+ cot

(
kb

2
− π

2

⌊
kb

π

⌋)]
< |α| for α < 0 ;

we neglect the Kirchhoff case, α = 0, which is trivial from the present
point of view, σ(H) = [0,∞).

Note that for α < 0 the spectrum extends to the negative part of the
real axis and may have a gap there – this happens if α < −4(a−1+b−1)
– which is not important here because there is not more than a single
negative gap, and this gap always extends to positive values.
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What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q ̸= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}
;

(we note that µ(θ) = µ(θ−1)) and its ‘one-sided analogues’.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 41 -



What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q ̸= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}
;

(we note that µ(θ) = µ(θ−1)) and its ‘one-sided analogues’.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 41 -



What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q ̸= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}
;

(we note that µ(θ) = µ(θ−1)) and its ‘one-sided analogues’.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 41 -



What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q ̸= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}

;

(we note that µ(θ) = µ(θ−1)) and its ‘one-sided analogues’.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 41 -



What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q ̸= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}
;

(we note that µ(θ) = µ(θ−1))

and its ‘one-sided analogues’.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 41 -



What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q ̸= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}
;

(we note that µ(θ) = µ(θ−1)) and its ‘one-sided analogues’.
P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture I September 12, 2023 - 41 -



The golden mean situation
As an example, take the golden mean, θ =

√
5+1
2 = [1; 1, 1, . . . ], which

can be regarded as the ‘worst’ irrational.

It may be infinity or nothing, e.g., plotting the minima of the function
appearing in the first gap condition, α > 0, the picture looks as follows

where the points approach the limit values from above. Note also that
‘higher’ gap series open as the coupling strength α increases; the critical
values at which that happens are π2

√
5ab
θ±1/2|n2 −m2 − nm|, n,m ∈ N ,

cf. [E-Gawlista’96, loc.cit.].
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But a closer look shows a more complex picture
But a detailed analysis, cf. [E-Turek’17, loc.cit.], shows to a different
and more subtle picture:

Theorem

Let a
b = θ =

√
5+1
2 , then the following claims are valid:

(i) If α > π2
√

5a
or α ≤ − π2

√
5a
, there are infinitely many spectral gaps.

(ii) If
−2π

a
tan
(3−√

5

4
π
)
≤ α ≤ π2

√
5a
,

there are no gaps in the positive spectrum.

(iii) If − π2

√
5a

< α < −2π

a
tan
(3−√

5

4
π
)
,

there is a nonzero and finite number of gaps in the positive spectrum.

Corollary

The above claim about the existence of BS graphs is valid.
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More about this example

The window in which the golden-mean lattice has the BS property is
narrow, it is roughly 4.298 ≲ −αa ≲ 4.414.

We are also able to control the number of gaps in the BS regime; a more
refined Diophantine analysis yields the following result:

Theorem

For a given N ∈ N, there are exactly N gaps in the positive spectrum if
and only if α is chosen within the bounds

−
2π
(
θ2(N+1) − θ−2(N+1)

)
√

5a
tan
(π

2
θ−2(N+1)

)
≤ α < −

2π
(
θ2N − θ−2N

)
√

5a
tan
(π

2
θ−2N
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.

Note that the numbers Aj :=
2π(θ2j−θ−2j)√

5
tan
(
π
2 θ

−2j
)
form an increasing

sequence the first element of which is A1 = 2π tan
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3−
√

5
4 π

)
and

Aj <
π2

√
5
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Beyond the golden mean case
The used technique allows to derive within the present model a more
general result, applicable to any α badly approximable by rationals:

Theorem

Let θ = a
b and define

γ+ := min

{
inf
m∈N

{
2mπ

a
tan
(π

2
(mθ−1 − ⌊mθ−1⌋)

)}
, inf
m∈N

{
2mπ

b
tan
(π

2
(mθ − ⌊mθ⌋)

)}}

and γ− similarly with ⌊·⌋ replaced by ⌈·⌉. If the coupling constant α
satisfies

γ± < ±α < π2

max{a, b}µ(θ) ,

then there is a nonzero and finite number of gaps in the positive spectrum.

Choosing, for instance, θ = [0; t, t, 1, 1, . . . ] with t ≥ 3, one can check that
the BS property may also hold in lattices with repulsive δ coupling, α > 0.

Nevertheless, the BS behavior is exceptional and one wonders whether and
how often it could be observed in other quantum graph situations.
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What to bring home from Lecture I

A novel concept, such as the one of a quantum graph, is likely to
develop rapidly if it reflects a topic of wide interest in physics. If
it is connected with attractive mathematical problems, the better.

Quantum graphs offer a nice illustration of the importance of
self-adjointness, or more specifically, they show that this property
is much more than mere ‘Hermiticity’ of operators supposed to
represent observables.

Quantum graphs typically exhibit rich families of resonances.
Depending on the vertex coupling their semiclassical behavior
may violate Weyl’s law.

Periodic quantum graphs often exhibit flat bands. There are
graphs in which the number of open gaps is nonzero and finite.
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