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Quantum waveguides
We return to graphs later, now let us change the topic. Using graphs
to model real-world objects like semiconductor quantum wires we make
certainly some idealizations:

real wires have a nonzero diameter

the confinement is not perfect, in particular, quantum tunneling is
possible between different wires (or different part of the same wire)

Let us deal with the first point, forgetting temporarily about the possibility
of tunneling; suppose for starters that we are in a 2D situation and the
particle is confined to a strip of width 2a in the plane with hard walls.

In the absence of other forces, the Hamiltonian is then the (negative)
Laplacian, −∆, and the spectral problem means to solve the equation

−
( ∂2

∂x2
+

∂2

∂y2

)
ψ(x , y) = λψ(x , y), x ∈ R, |y | < a,

with Dirichlet boundary condition describing the hard wall, that is

ψ(x ,±a) = 0.
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A 2D quantum waveguide
This is easy to solve by separation of variables

: the transverse problem,
−χ′′(y) = κ2χ(y), has a discrete spectrum,

κ2
n =

(πn
2a

)2

, χ2n−1(y) =
1√
a

cosκ2n−1y , χ2n(y) =
1√
a

sinκ2ny , n = 1, 2, . . .,

while the spectrum of the longitudinal part is [0,∞). Consequently, the
spectrum of the full problem in [κ2

1,∞) with the generalized eigenfunctions

χn(y) e±ikx referring to energy κ2
n + k2

It is so simple that you may wonder why I am mentioning it at all. The
reason will become with obvious when we note a nontrivial geometry may
change the picture. As the simplest example suppose that the strip is bent.

To be specific, consider a curve Γ : R→ R2 assuming that it is smooth
and asymptotically straight and put Ω := {x ∈ R2 : dist(x , Γ) < a}; the
strip considered above, which we denote as Ω0, refers naturally to the
trivial situation when Γ is a straight line.
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A bent Dirichlet strip
Classical intuition suggests that nothing much happens: the particle
may reflect from the walls but the only closed trajectories are those
perpendicular to the strip axis, a zero measure set in the phase space.

To see what happens with a quantum particle, we have to solve the
spectral problem, −∆Ω

Dψ = λψ, for the corresponding Dirichlet Laplacian.
A useful trick is to parametrize Ω using locally orthogonal curvilinear
coordinates s, u, parallel and perpendicular to the strip axis, respectively,

x(s, u) =
(
Γ1(s)− uΓ̇2(s), Γ2(s) + uΓ̇1(s)

)
, |u| < a.

We transform −∆ into these coordinates and remove the Jacobian
replacing, with an abuse of notation, ψ(x) with (1 + uγ(s))1/2ψ(s, u),
where γ(s) := (Γ̈2Γ̇1 − Γ̈1Γ̇2)(s) is the signed curvature of Γ; then we
have to find the spectrum of the following Dirichlet operator in L2(Ω0):

H =− ∂

∂s
(1 + uγ(s))−2 ∂

∂s
− ∂2

∂u2
+ V (s, u),

V (s, u) :=− γ(s)2

4(1 + uγ(s))2
+

uγ̈(s)

2(1 + uγ(s))3
− 5

4

u2γ̇(s)2

(1 + uγ(s))4
.
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A bent Dirichlet strip

In this way, we have to solve an equation on a straight strip but a
more complicated; the geometry was now translated into the coefficients.

It is not as bad as it looks at a glance. First of all, since Ω is supposed to
be asymptotically straight, it is easy to check that the bend keeps the
essential spectrum preserved, σess(−∆Ω

D) = [κ2
1,∞). Moreover, we have

H = − ∂2

∂u2
− ∂2

∂s2
− 1

4
γ(s)2 +O(a) as a→ 0,

and as a 1D Schrödinger operator with a purely attractive potential, the
longitudinal part has at least one negative eigenvalues whenever γ 6= 0.

Remark: Limits like a→ 0 were studied in the 1970s as a tool for
quantization on manifolds. In particular, Jǐŕı Tolar computed them in all
dimensions and codimensions – but his supervisor told him it was good for
nothing so he put it into his drawer and published it only many years later:

J. Tolar: On a quantum mechanical d’Alembert principle, in Group Theoretical Methods in Physics, Lecture Notes in
Physics, vol. 313, Springer, Berlin 1988; pp. 268-274.

Moral: Listen to your supervisor, but think twice before taking his advice!
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A bent Dirichlet strip

But we can do better, without restriction on the strip width. Consider
any a > 0 for which the strip boundary is still smooth, a‖γ‖∞ < 1, and
the strip does not intersect itself.

We apply the variational method: if we find a function φ ∈ D(H) such
that (ψ,Hψ) < κ2

1‖ψ‖2, the spectrum threshold would be below κ2
1.

Using the Ansatz ψ(s, u) = φλ(s)χ1(u) + εf (s, u), one can check that
choosing appropriately functions φλ(s) and f and the number ε, we
achieve the goal obtaining the following result:

Theorem

If the strip axis is a C 4 smooth curve, not straight but asymptotically
straight [leaving out the precise formulation], the the Dirichlet Laplacian
in the curved strip has at least one isolated eigenvalue below κ2

1.

J. Goldstone, R.L. Jaffe: Bound states in twisting tubes, Phys. Rev. B45 (1992), 14100–14107.

P. Duclos, P.E.: Curvature–induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys.
7 (1995), 73–102.
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any a > 0 for which the strip boundary is still smooth, a‖γ‖∞ < 1, and
the strip does not intersect itself.

We apply the variational method: if we find a function φ ∈ D(H) such
that (ψ,Hψ) < κ2

1‖ψ‖2, the spectrum threshold would be below κ2
1.

Using the Ansatz ψ(s, u) = φλ(s)χ1(u) + εf (s, u), one can check that
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How it differs from the classical motion?

Trying to understand where this effect might come from we may think
of what classical mechanics tells us about a bobsleigh moving down
through a twisting, banked, iced track

. As we all know in the curved
part the conservation laws make the bobsleigh ‘climb’ the track wall,

Source: Wikipedia

However, for a ‘quantum bobsleigh’ the transverse contribution to the
energy is quantized so it may not be able to ‘jump’ from one transverse
level to another one.

The comparison is only partly fitting, of course, one can note that a
bobsleigh in a rectangular-shaped track would climb nowhere.
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Smoothness is not obligatory

What is important, the effect of geometrically induced binding is robust.

To illustrate this claim, consider Ω in the shape of an L-shaped strip; we
choose the width 2a = π so that κ2

1 = 1. Expanding the sought solution to
−∆Ω

Dψ = λψ into the ‘transverse’ basis, one can prove that the operator
has a single eigenvalue ≈ 0.929; the corresponding eigenfunction is

P.E., P. Šeba, P. Št’ov́ıček: On existence of a bound state in an L-shaped waveguide, Czech. J. Phys. B39 (1989),
1181–1191.
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Other geometries
Moreover, the binding effect coming from the geometry of the guide is
not restricted to bends. For instance, it is not difficult to see that bound
states occur if the tube has a local ‘bulge’.

Similar effect can also be seen in more complicated geometries. Consider,
for instance, a pair of parallel Dirichlet strips of widths d1, d2 and suppose
they are connected laterally by window of width a in the common boundary

The essential (absolutely continuous) spectrum of the Hamiltonian H

starts now at
(
π
d

)2
, where d = max{d1, d2} and we have

Theorem

The discrete spectrum of H is nonempty for any a > 0 and

]σdisc(H) ≥ 2a

d

√
1−

( d

d1 + d2

)2

P.E., P. Šeba, M. Tater, D. Vaněk: Bound states and scattering in quantum waveguides coupled laterally through a
boundary window, J. Math. Phys. 37 (1996), 4867–4887.
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Example: two particular cases

Let us plot two eigenfunction, the ground state for d1 = d2 and the
second excited state is an asymmetric waveguide:

In particular, this example illustrates well the purely quantum nature of
the effect: a classical particle in such a system cannot be trapped except
for the (phase-space measure zero!) events of reflections, either from
the window edges or perpendicular to the walls.
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A detour: Šeba billiard
Of course, this is not the only example illustrating profound differences
between the classical and quantum mechanics. Let us mention one more,
remotely related, which concerns a chaotic behavior.

In the canonical chaotic behavior example of Sinai billiard, shrinking the
obstacle to a point, the system becomes integrable.

Quantum chaos shows in the eigenvalue spacing distribution, and the
quantum Sinai billiard remains chaotic even if the obstacle is a point
interaction – although not fully chaotic in the sense of GOE ensemble.
What is important, such an effect was also observed experimentally.

Source: wikipedia Source: [SAYO’10]

P. Šeba: Wave chaos in singular quantum billiard, Phys. Rev. Lett. 64 (1990), 1855–1858.

C. Stone, Y.A. El Aoudi, V.A. Yurovsky, M. Olshanii1: Two simple systems with cold atoms: quantum chaos tests and
non-equilibrium dynamics, New J. Phys. 12 (2010), 055022.
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More results about waveguides

The results can be tested experimentally in flat electromagnetic
waveguides.

J.T. Londergan, J.P. Carini, D.P. Murdock: Binding and Scattering in Two-Dimensional Systems. Applications
to Quantum Wires, Waveguides and Photonic Crystals, Springer LNP m60, Berlin 1999.

Similar results hold for other boundary conditions except Neumann.
However, if the boundaries are different, the orientation matters, e.g.,
in a DN strip a bending produces bound states if the Dirichlet
condition is ‘inside’ and it does not in the opposite case.

J. Dittrich, J. Kř́ıž: Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J. Phys. A:
Math. Gen. 35 (2002), L269–275.

Similar results hold for three-dimensional bent tubes of circular cross
section.

If the cross section is not circular, we have to consider the twisting
which, in contrast to the bending, produces a repulsive interaction.

For many more results see

P.E., H. Kovǎŕık: Quantum Waveguides; xxii + 382 p.; Springer International, Heidelberg 2015.
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Quantum layers

If we take this exercise one dimension higher, we can observe other
interesting phenomena

. Such situations have again a physical meaning,
say, as models of electrons is semiconductor layers on a non-flat substrate.

 

 

                            

 

We consider a particle confined to a hard-wall layer
of width 2a built over an infinite, smooth, non-
planar, asymptotically flat surface Σ. As in the
previous case we can use the curvilinear coordi-
nates in which, for thin layers, we have

H = − ∂2

∂u2
− g−1/2 ∂

∂sµ
g1/2gµν

∂

∂sν
+ K −M2 +O(a),

where g is metric tensor of the surface Σ, and K , M are its Gauss and
mean curvatures, respectively. Since K = k1k2 and M = 1

2 (k1 + k2), the
leading term of the effective potential, K −M2 = −1

4 (k1 − k2)2, is again
of the attractive nature, vanishing only on planes and spheres.
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The effective potential in a thin layer

 

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture II September 12, 2023 - 14 -



Curvature induced bound states in layers
However, the existence results are not limited to thin layers only:

Theorem

If the surface Σ is C 4 smooth non-planar and K =
∫

Σ K dΣ ≤ 0 we have
inf σ(H) < κ2

1. If Σ is asymptotically flat [leaving out again the precise
formulation], the the Dirichlet Laplacian has at least one isolated
eigenvalue below κ2

1.

P. Duclos, P.E., H. Krejčǐŕık: Bound states in curved quantum layers, Commun. Math. Phys. 223 (2001), 13–28.

Furthermore, the Cohn-Vossen inequality states that

K ≤ 2π (2− 2h − e),

where h is the genus of Σ and e is the number of ends
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Nontrivial topology & positive Gauss curvature

Hence K < 0 whenever h ≥ 1 and we have

Theorem

Conclusions of the previous theorem hold whenever Σ is not conformally
equivalent to the plane.

G. Carron, P.E., D. Krejčǐŕık: Topologically non-trivial quantum layers, J. Math. Phys. 45 (2004), 774–784.

In the opposite situation, K > 0, we do not have such a universal result,
just several sufficient conditions. As you may expect, one of them
guarantees the existence of curvature induced bound states provided the
layer halfwidth a is small enough.

But layers of positive Gauss curvature reveal other interesting property,
namely that the spectral properties may depend on the global geometry
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Example: conical layers

Consider a hard-wall layer of the thickness π built over conical surface
of an opening angle π − 2θ for some θ ∈ (0, 1

2π),

Σθ := {(r , φ, z) ∈ R3 : z = r sin θ, φ ∈ [0, 2π)}

Call the corresponding Dirichlet Laplacian Hθ. We have

Theorem

For any fixed θ ∈ (0, 1
2π) we have σess(Hθ) = [1,∞) while the discrete

spectrum of the operator is non-empty with ]σdisc(Hθ) =∞. Each
eigenfunction is axially symmetric, i.e. independent of φ.

P.E., M. Tater: Spectrum of Dirichlet Laplacian in a conical layer, J. Phys. A: Math. Theor. 43 (2010), 474023.

The discrete spectrum infiniteness is related to the fact that the geodetic
circles on Σθ are shorter than their counterparts in the plane, which means
that the effective attractive potential that behaves asymptotically as c

r2 .
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Conical layer eigenvalues

 

Plot of the dependence of the first six eigenvalues on θ
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Conical layer eigenfunctions

 

Plot of the first seven eigenvalues for θ = 5π
36
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Conical layer probability distributions

 Plot of the radial cuts of the first seven probability distributions for θ = 5π
36
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General parabolic layers
In fact, the conical layer represents the borderline situation as far as
the infiniteness of the discrete spectrum is concerned.

Consider surface of revolution Σ(f ) := {(x , f (|x |)) ∈ R3 : x ∈ R2}
corresponding to a function f ∈ C∞ such that f (0) = ḟ (0) = 0 and
f (r) = crα, α > 1, holds for all r ≥ R, and the layer Ω = Ω(f , a) of
halfwidth a small enough to make the parallel coordinates well defined.

Theorem

We have σess(H) =
[(

π
2a

)2
,∞
)

and #σdisc(H) =∞. Moreover, we have

N( π
2a

)2−E (H) ≈ 1

2π

αc

2α
B
(

3
2 ,

α
2 −

1
2

)
E (α−1)/2

as E ↘ 0,

where B(·, ·) is the Euler beta function, and f ≈ g means f (z), g(z)→∞
and f (z)

g(z) → 1 as z → 0.

P.E., V. Lotoreichik: Spectral asymptotics of the Dirichlet Laplacian on a generalized parabolic layer, Int. Eqs Oper.
Theory. 92 (2020), 15
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Spiral waveguides

Returning to waveguides, note that not every bending gives rise to a
non-void discrete spectrum. To show that, consider spiral-shaped regions.

Such waveguide-type systems appear often in physics. A few examples:
• guides for cold atoms with application to atomic gyroscopes

Jiang Xiao-Jun, Li Xiao-Lin, Xu Xin-Ping, Zhang Hai-Chao, Wang Yu-Zhu: Archimedean-spiral-based microchip ring
waveguide for cold atoms, Chinese Phys. Lett. 32 (2015), 020301.

Xiaojun Jiang, Xiaolin Li, Haichao Zhang, Yuzhu Wang: Smooth Archimedean-spiral ring waveguide for cold atomic
gyroscope, Chinese Opt. Lett. 14 (2016), 070201.

• electromagnetic or optical systems
N. Bamiedakis, J. Beals, R.V. Penty, I.H. White, J.V. DeGroot, T.V. Clapp: Cost-effective multimode polymer
waveguides for high-speed on-board optical interconnects, IEEE J. Quant. Electronics 45 (2009), 415–424.

Zhitian Chen et al.: Spiral Bragg grating waveguides for TM mode Silicon photonics, Optics Express 23 (2015),
25295–25307.

• with applications such as nanoparticle detection or spectrometry
Shui-Jing Tang et al.: On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects, Advanced
Materials 30 (2018), 1800262.

B. Redding, Seng Fatt Liew, Y. Bromberg, Raktim Sarma, Hui Cao: Evanescently coupled multimode spiral
spectrometer, Optica 3 (2016), 956–962.

Tong Chen, Hansuek Lee, K.J. Vahala: Design and characterization of whispering-gallery spiral waveguides, Optics
Express 22 (2014), 5196–5208.

• spiral shapes appear also in acoustic waveguides
S. Periyannan, P. Rajagopal, K. Balasubramaniam: Multiple temperature sensors embedded in an ultrasonic “spiral-like”
waveguide, AIP Advances 7 (2017), 035201.
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The simplest case: an Archimedean waveguide
Let Γa be the Archimedean spiral in the plane with the slope a > 0,
expressed in terms of the polar coordinates, Γa = {r = aθ : θ ≥ 0},
and denote by Ca its complement, Ca := R2 \ Γa which is an open set.

Source: Wikipedia

We are interested in Ha = −∆CaD , the Dirichlet Laplacian in L2(Ca). The
value of a is not important: Ca so changing it simply scales the spectrum.

The quadratic form associated with Ha looks in polar coordinates as

qa : qa[ψ]=

∫ ∞
0

∫ aθ

rmin(θ)

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]drdθ
=

∫ ∞
0

∫ (r+2πa)/a

r/a

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]dθdr
defined for all ψ ∈ H1(Ωa) satisfying Dirichlet condition at points of ∂Ωa

with r > 0 and such that limr→0+
ψ(r ,θ)

sin 1
2
θ

exists being independent of θ.
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Continuous spectrum of Ha

Theorem

We have σess(Ha) = [(2a)−2,∞). Furthermore, if I is an open interval

away from T =
{(

n
2a

)2
: n = 1, 2, . . .

}
, then the spectrum of Ha in I is

purely absolutely continuous.

P.E., M. Tater: Spectral properties of spiral-shaped quantum waveguides, J. Phys. A: Math. Theor. 53 (2020), 505303

Proof sketch: The parallel coordinate parametrization yields the first
claim. Next we use Mourre’s commutator method with the conjugate
operator A = − i

2

(
r ∂∂r + ∂

∂r r
)

to H̃a on Ωa, the generator of the group of
dilations of Ωa in the direction parallel to the line r = aθ. We have

EH̃a
(I )[H̃a, iA]EH̃a

(I ) ≥ −2
∂2

∂r2
EH̃a

(I ) ≥ 1

8
EH̃a

(I ) ;

the technical assumptions are satisfied and the bound contains no compact
part, hence there are no embedded eigenvalues and the spectrum of H̃a in
the interval I is purely absolutely continuous. �
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Discrete spectrum?
The question about the existence of discrete spectrum below (2a)−2

is equivalent to the positivity violation of the shifted quadratic form,

ψ 7→ qa[ψ]− 1

(2a)2
‖ψ‖2.

Since ψ(r , r/a) = ψ(r , (r + 2πa)/a) = 0, we find easily

qa[ψ]− 1

(2a)2
‖ψ‖2 ≥ p(0,∞)[ψ],

where

p(α,β)[ψ] :=

∫ β

α
dθ

∫ aθ

rmin(θ)

[
r
∣∣∣∂ψ(r , θ)

∂r

∣∣∣2 +
( 1

4r
− r

4a2

)
|ψ(r , θ)|2

]
dr

Using the Dirichlet conditions in the ‘vertical’ direction we can check that

p(α,β)[ψ] ≥ 0 for any 2π ≤ α < β ≤ ∞,
and similarly, p(α,β)[ψ] ≥ 0 for β ≤ π. Consequently, the only negative
contribution can come from the interval (π, 2π), in particular, that there
can be at most a finite number of bound states. However, we are going
to argue that the discrete spectrum is in fact empty.
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Parallel coordinates
Let u be the distance from Γa along the inward pointing normal, then
the points of Ca can be parametrized (for θ > 2π at least) as

x1(θ, u)= aθ cos θ − u√
1 + θ2

(
sin θ + θ cos θ

)
,

x2(θ, u)= aθ sin θ +
u√

1 + θ2

(
cos θ − θ sin θ

)

A natural counterpart to the variable u is the arc length of Γa given by

s(θ) = a

∫ θ

0

√
1 + ξ2 dξ = 1

2a
(
θ
√

1 + θ2 + ln(θ +
√

1 + θ2)
)

which for large values of θ behaves as s(θ) = 1
2aθ

2 +O(ln θ).

Using it we can express the curvature of the spiral as

κ(θ) =
2 + θ2

a(1 + θ2)3/2
=

1

aθ
+O(θ−2) as θ →∞

which means that κ(s) = 1√
2as

+O(s−1) as s →∞.
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What works against curvature-induced bounding?
In the strip Σa,ext =

{
(s, u) : s > s(2π), u ∈ (0, d(s))

}
we can then

pass to a unitarily equivalent operator acting as

Ĥa,extψ = − ∂

∂s
(1− uκ(s))−2 ∂ψ

∂s
(s, u)− ∂2ψ

∂u2
(s, u) + V (s, u)ψ(s, u),

where

V (s, u) := − κ(s)2

4(1− uκ(s))2
− uκ̈(s)

2(1− uκ(s))3
− 5

4

u2κ̇(s)2

(1− uκ(s))4
,

with an appropriate boundary condition at s = s(2π).

The point is that while the radial width of the Archimedes spiral is
constant, the ‘true’, perpendicular one, denoted as d(s), is smaller
than 2πa and only asymptotically constant: we have

π2

d(s)2
− 1

4a2
+ V (s, u) =

π − u

2a2θ3
+O(θ−4),

and as a result, the contributions to the effective potential cancel in the
leading order as θ →∞ eliminating thus the curvature-induced attraction.

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture II September 12, 2023 - 27 -



What works against curvature-induced bounding?
In the strip Σa,ext =

{
(s, u) : s > s(2π), u ∈ (0, d(s))

}
we can then

pass to a unitarily equivalent operator acting as
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A variation: spiral waveguide with a cavity
Let us ‘erase’ a part of the Dirichlet boundary, that is, we impose the
condition on the ‘cut’ Archimedean spiral Γa,β for some β > 0, where
Γa,β = {r = aθ : θ ≥ β}. The particle thus ‘lives’ in Ca,β := R2 \ Γa,β

and its Hamiltonian, modulo unimportant physical constants, is

Ha,β = −∆
Ca,β
D ,

the Dirichlet Laplacian in L2(Ca,β)

. Obviously, we have

σess(Ha,β) = [(2a)−2,∞).

By bracketing, the discrete spectrum is nonempty for β large enough:

Proposition

There is a critical β1 = 2j0,1 ≈ 4.805 ≈ 1.531π such that σdisc(Ha,β) 6= ∅
holds for all β > β1. Furthermore, let B = {βj}∞j=1 be the sequence

B =
{

2j0,1, 2j1,1, 2j1,1, 2j2,1, 2j2,1, 2j0,2, 2j1,2, 2j1,2, . . .
}

composed of zeros
of Bessel functions Jn, n = 0, 1, . . . , then for any β > βj the operator Ha,β

has at least j eigenvalues, the multiplicity taken into account.
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Eigenvalues
One can solve the problem numerically using FEM technique; here is
how the eigenvalues of H1/2,β depend on the angle β:

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

E
n

As expected, they are monotonously decreasing functions. We also can
identify the critical angle at which the first eigenvalue appears to be
β1 ≈ 1.43 ≈ 0.455π, a much smaller value than the above sufficient
condition; what is more important, it provides the indication that the
discrete spectrum of the ‘full’ Archimedean spiral region is void.
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Eigenfunctions

Figure: The first nine eigenfunctions of H1/2,21/2 shown through their horizontal
levels. The corresponding energies are 0.1280, 0.2969, 0.3456, 0.5312, 05811,
0.6825, 0.8266, 0.8852, and 0.9768, respectively.

The results agree with the Courant nodal domain theorem; the nodal
lines are situated in the cavity only which, as well the finiteness of the
spectrum, corresponds nicely to the observation that the part of Ca,β
referring to the angles θ > max{2π, β1} is a classically forbidden zone.
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A variation: multi-arm Archimedean waveguide
Let Γm

a be the union of m Archimedean spirals with slope a > 0 and
an angular shift, Γm

a = {r = a
(
θ − 2πj

m

)
: θ ≥ 2πj

m , j = 0, . . . ,m − 1}.
As before we consider its complement Cma := R2 \ Γm

a and the operator

Ha = −∆
Cma
D .

The analysis is similar, but there is a difference coming from regularity of
the boundary. For m = 2 the set C2

a consists of two connected components
and has a smooth boundary, for m ≥ 3 it consists of m connected
components separated by the branches of Γm

a , each of them them has an
angle at the origin of coordinates which is 2π

m , that is, convex; this means
that for m ≥ 2 the singular component is missing.

It is sufficient to consider one connected component of Cma only, i.e. the

operator H̃m
a = −∂2f

∂r2 − 1
r2
∂2f
∂θ2 − 1

4r2 referring to the skewed strip

Ωm
a :=

{
(r , θ) : r ∈ (rmmin(θ), aθ), θ > 0

}
,

where rmmin(θ) := max
{

0, a
(
θ − 2π

m

)}
with D(Hm

a ) = H2(Ωm
a ) ∩H1

0(Ωm
a ).
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and has a smooth boundary, for m ≥ 3 it consists of m connected
components separated by the branches of Γm

a , each of them them has an
angle at the origin of coordinates which is 2π

m , that is, convex; this means
that for m ≥ 2 the singular component is missing.

It is sufficient to consider one connected component of Cma only, i.e. the

operator H̃m
a = −∂2f

∂r2 − 1
r2
∂2f
∂θ2 − 1

4r2 referring to the skewed strip

Ωm
a :=

{
(r , θ) : r ∈ (rmmin(θ), aθ), θ > 0

}
,

where rmmin(θ) := max
{

0, a
(
θ − 2π

m

)}
with D(Hm

a ) = H2(Ωm
a ) ∩H1

0(Ωm
a ).
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Spectrum of multi-arm spiral region

Proposition

σ(Hm
a ) =

[(
m
2a

)2
,∞
)

for any natural m ≥ 2. The spectrum is absolutely

continuous outside Tm =
{(

mn
2a

)2
: n = 1, 2, . . .

}
and its multiplicity is

divisible by m.

Proof sketch: The multiplicity claim is obvious. The above arguments
used to determine the essential spectrum and to prove its absolute
continuity outside the thresholds modify easily.

Furthermore, the discrete spectrum is void. Indeed, since the domain is
now ‘pure Sobolev’, the bottom part, r = 0, of the skewed strip supports
Dirichlet condition. This means that

pm(α,β)[ψ] ≥ 0 now for any 0 ≤ α < β ≤ ∞

so that qma [ψ]−
(

m
2a

)2
‖ψ‖2 ≥ pm(0,∞)[ψ] ≥ 0 for any ψ ∈ dom[qma ]. �

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture II September 12, 2023 - 32 -



Spectrum of multi-arm spiral region

Proposition

σ(Hm
a ) =

[(
m
2a

)2
,∞
)

for any natural m ≥ 2. The spectrum is absolutely

continuous outside Tm =
{(

mn
2a

)2
: n = 1, 2, . . .

}
and its multiplicity is

divisible by m.

Proof sketch: The multiplicity claim is obvious. The above arguments
used to determine the essential spectrum and to prove its absolute
continuity outside the thresholds modify easily.

Furthermore, the discrete spectrum is void. Indeed, since the domain is
now ‘pure Sobolev’, the bottom part, r = 0, of the skewed strip supports
Dirichlet condition. This means that

pm(α,β)[ψ] ≥ 0 now for any 0 ≤ α < β ≤ ∞

so that qma [ψ]−
(

m
2a

)2
‖ψ‖2 ≥ pm(0,∞)[ψ] ≥ 0 for any ψ ∈ dom[qma ]. �

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture II September 12, 2023 - 32 -



Spectrum of multi-arm spiral region

Proposition

σ(Hm
a ) =

[(
m
2a

)2
,∞
)

for any natural m ≥ 2. The spectrum is absolutely

continuous outside Tm =
{(

mn
2a

)2
: n = 1, 2, . . .

}
and its multiplicity is

divisible by m.

Proof sketch: The multiplicity claim is obvious. The above arguments
used to determine the essential spectrum and to prove its absolute
continuity outside the thresholds modify easily.

Furthermore, the discrete spectrum is void. Indeed, since the domain is
now ‘pure Sobolev’, the bottom part, r = 0, of the skewed strip supports
Dirichlet condition. This means that

pm(α,β)[ψ] ≥ 0 now for any 0 ≤ α < β ≤ ∞

so that qma [ψ]−
(

m
2a

)2
‖ψ‖2 ≥ pm(0,∞)[ψ] ≥ 0 for any ψ ∈ dom[qma ]. �

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture II September 12, 2023 - 32 -



Eigenfuctions

Figure: The jth eigenfunction, j = 1, 2, 4, 6, of H6
3,2π, the corresponding energies

are 0.1296, 0.3282, 0.5871, and 0.6783, respectively.

Here we plot result for a six-arm spiral region with the central cavity. As
expected, with the growing m the eigenfunctions – with the possible
exception of states close to the threshold – become similar to those of the
Dirichlet Laplacian in a disc; it is instructive to compare the nodal lines to
those of the single arm region shown above.
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General spirals
There are many spirals beyond the Archimedean case, for instance

logarithmic

Fermat Poinsot Atzema Fibonacci Theodorus

Source: Wikipedia

A spiral curve Γ can be described in polar coordinates as the family of
points (r(θ), θ), where r(·) is a given increasing function. Let us assume
that r(·) is a C 2-smooth function excluding thus well-known curves such
as Fibonacci spiral, spiral of Theodorus, etc.

Remarks: (i) The spirals considered are semi-infinite r : R+ → R+.
One can also consider ‘fully’ infinite spirals for which r : R→ R+.

(ii) A warning: It matters that the boundary is Dirichlet, for Neumann
the spectral properties can be completely different as the well-known
Simon’s example, in which r(θ) = 3

4 + 1
2π arctan θ, shows.

B. Simon: The Neumann Laplacian of a jelly roll, Proc. AMS 114 (1992), 783–785.
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General spirals

The monotonicity of r means that Γ does not intersect itself, in other
words, the width function a : a(θ) = 1

2π

(
r(θ)− r(θ − 2π)

)
is positive for

any θ ≥ 2π. The ‘inward’ coil width is 2πa(θ); we make this choice with
the correspondence to the Archimedean case in mind).

As before we denote C := R2 \ Γ and ask about spectral properties of the
Dirichlet Laplacian Hr = −∆CD in L2(C).

Multiarm-arm spirals are similarly described by an m-tuple of increasing
functions rj : [θj ,∞)→ R+, j = 0, 1, . . . ,m − 1 referring to angles
0 = θ0 < θ1 < · · · < θm−1 < 2π satisfying

aj(θ) :=
1

2π

(
rj(θ)− rj+1(θ)

)
> 0 for θ ≥ θj

Note that a two-arm spiral can also be alternatively described by means
of a function r : R→ R such that ±r(θ) > 0 for ±θ > 0 if we interpret
negative radii as describing vectors rotated by π.
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Types of general spirals

Asymptotic properties of the width function are decisive. We call a
spiral-shaped region C simple if the function a(·) is monotonous (or
monotonous on both the halflines R±).

A simple C is called expanding and shrinking if a(·) is increasing and
decreasing, respectively, for θ ≥ 0; these qualifications are labeled
correspondingly as strict if limθ→∞ a(θ) =∞ and limθ→∞ a(θ) = 0.

A spiral-shaped region is called asymptotically Archimedean if there
is an a0 ∈ R such that limθ→∞ a(θ) = a0, for multi-arm spirals this
means finite limits of all the aj .

A region C is obviously unbounded iff limθ→∞ r(θ) =∞. If the limit
is finite, limθ→∞ r(θ) = R, the closure C is contained in the circle of
radius R, it may or may not be simply connected as the example of
Simon’s jelly roll mentioned above shows (and the Neumann Laplacian
spectrum in this region is purely continuous).
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Description of general spiral regions
The Hamiltonian domain is D(Hr ) = H2(Ωr ) ∩H1

0(Ωr )⊕ C(ψsing),
with the singular element missing if the boundary is convex around the
origin. In polar coordinates Hr is an opeator on a skewed strip, now of a
generally nonconstant width

. The quadratic form associated with Hr is

qr : qr [ψ]=

∫ ∞
0

∫ r(θ)

rmin(θ)

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]drdθ
=

∫ ∞
0

∫ θ−1(r)+2π

θ−1(r)

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]dθdr
where θ−1(·) is the pull-back of the function r(·); its domain consists
of function ψ ∈ H1(Ωr ) satisfying appropriate conditions at ∂Ωa.

We can also express the arc length of Γ and its curvature; they are

s(θ) =

∫ θ

0

√
ṙ(ξ)2 + r(ξ)2 dξ and κ(θ) =

r(θ)2 + 2ṙ(θ)2 − r(θ)r̈(θ)

(r(θ)2 + ṙ(θ)2)3/2
.
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Strictly expanding spiral regions
In contrast to the Archimedean case, it may not be possible to amend
the arclength with the orthogonal coordinate u to parametrize Cr by

x1(θ, u)= r(θ) cos θ − u√
ṙ(θ)2 + r(θ)2

(
ṙ(θ) sin θ + r(θ) cos θ

)
,

x2(θ, u) = r(θ) sin θ +
u√

ṙ(θ)2 + r(θ)2

(
ṙ(θ) cos θ − r(θ) sin θ

)
.

The reason is that for strictly expanding spirals the inward normal at a
point may not intersect the previous spiral coil; it is easy to check that
in the examples of a logarithmic spiral, r(θ) = a ekθ with a, k > 0, or
hyperbolic spiral, r(θ) = aθ−1.

Fortunately, some properties of Hr can be derived without the use of the
locally orthogonal system. Using suitable Weyl sequences one can prove
the following claim:

Proposition

σ(Hr ) = σess(Hr ) = [0,∞) holds if C is simple and strictly expanding.
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Fortunately, some properties of Hr can be derived without the use of the
locally orthogonal system. Using suitable Weyl sequences one can prove
the following claim:

Proposition

σ(Hr ) = σess(Hr ) = [0,∞) holds if C is simple and strictly expanding.
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Strictly shrinking spiral regions

On the other hand, parallel coordinates can be used, possibly outside
a compact region, if C is generated by a shrinking or an asymptotically
Archimedean spirals.

We combine bracketing with the unitarily equivalent form of the operator
in parallel coordinates,

ĤD
nc ≥ −

∂

∂s
(1− uκ(s))−2 ∂

∂s
+

π2

d(s)2
+ V (s, u)

and similarly for ĤN
nc. Since d(s)→ 0 as s →∞ holds is a strictly

shrinking region, the sum of the two last term explodes in the limit,
and in the standard way we can check the following claim:

Proposition

If C is simple and strictly shrinking, the spectrum of Hr is purely discrete.
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Example: Fermat spiral
For Fermat spiral, r(θ)2 = b2θ, we have a(θ) = 1

2bθ
−1/2 +O(θ−3/2)

so the spectrum is discrete

. Moreover, apart from the central region the
eigenfunctions have a quasi-one-dimensional character, as illustrated for
b = 1 and eigenfunctions corresponding to the eigenvalues, E7 = 19.5462,
E15 = 28.3118, E27 = 38.8062, and E42 = 48.8367.
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Fermat spiral region: number of eigenvalues

The dominant contribution to the eigenvalue count comes from the
transverse confinement potential v(θ) =

(
π

d(θ)

)2
. For Fermat spiral

region this leads to the asymptotics N(E ) ≈ 1
64 b

4 E 2 as E →∞.
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E
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10

20

30

40

N
(E

)

However, a numerical evaluation of the spectrum shows a significant excess
that can be naturally attributed to the geometry-related effects, see also

M. van den Berg, E.B. Davies: Heat flow out of regions in Rm , Math. Z. 202 (1989), 463–482.

On the other hand, one can derive a Lieb-Thirring-type inequality which
shows that asymptotically it is only the spiral width here that matters.

D. Barseghyan, P.E.: Spectral estimates for Dirichlet Laplacian on spiral-shaped regions, J. Spect. Theory, to appear;
arXiv:2206.14058
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Asymptically Archimedean regions
Between the above discussed extremes the situation is much more
interesting. Modifying the argument in the Archimedean case we get

Proposition

If the spiral Γ is asymptotically Archimedean with limθ→∞ a(θ) = a0,
we have σess(Hr ) = [(2a0)−2,∞). In the case of a multi-arm region
withlimθ→∞ aj(θ) = a0,j , the essential spectrum is [(2a)−2,∞), where
a := max0≤j≤m−1 a0,j .

The question about the discrete spectrum is more subtle and the type of
asymptotics is decisive. Let us consider the spiral

r(θ) = a0θ + b0 − ρ(θ),

where ρ(·) is a positive function such that, limθ→∞ ρ(θ) = 0; for the sake
of definiteness we restrict our attention to functions satisfying

ρ̇(θ) = − c

θγ
+O(θ−γ−1) as θ →∞ with 1 < γ < 3.
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Infinite discrete spectrum

Theorem

For the described r(·), #σdisc(Hr ) =∞ holds for any c > 0.

P.E., M. Tater: Spectral properties of spiral-shaped quantum waveguides, J. Phys. A: Math. Theor. 53 (2020), 505303

Proof sketch: By a variational argument, using the trial functions ψ0,λ

with mollifier µ that gave the essential spectrum in the Archimedean case.
After a straightforward computation we get for the shifted quadratic form

p[ψ0,λ] < λ
4π

a0
‖µ̇‖2 −

(4π2c

a4
0

(a0

4

)γ/2
λ(γ−2)/2 +O

(
λ(γ′−2)/2

))
‖µ‖2,

where the right-hand side is negative for the scalling parameter λ small
enough. Moreover, since the support of µ is compact, one can choose a
sequence {λn} such that λn → 0 as n→∞ and the supports of ψ0,λn are
mutually disjoint which means that the discrete spectrum of Hr is infinite,
accumulating at the threshold (2a0)−2. �
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Fermat meets Archimedes

As an example, consider an interpolation between Fermat and
Archimedean spirals, in the simplest case described parametrically as

r(θ) = a

√
θ
(
θ + b2

a2

)
, a, b > 0,

with the asymptotic behavior

r(θ) = b
√
θ +

a2

2b
θ3/2 +O(θ5/2),

r(θ) = aθ +
b2

2a
+O(θ−1)

for θ → 0+ and θ →∞, respectively.

The Fermat spiral is conventionally considered as a two-arm one dividing
the plane into a pair of mutually homothetic regions, hence we interpolate
with the two-arm Archimedean spiral; the essential spectrum is [a−2,∞).
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Fermat meets Archimedes, continued

As for the discrete spectrum, taking the expansion of r(θ) two terms

further, we get b0 = b2

2a and

ρ(θ) =
b4

8a3θ
− 3b6

16a5θ2
+O(θ−3).

This means that the assumptions of the last proposition hold with with
c = b4

8a3 > 0 and γ = 2, and the the operator Hr has an infinite discrete
spectrum in (0, a−2) accumulating at the threshold.

One can also specify the accumulation rate: the one-dimensional effective
potential is in this case πb4

16a5 s
−1 +O(s−3/2), with the leading term of

Coulomb type, which shows that the number of eigenvalues below a−2− E
behaves as

Na−2−E (Hr ) =
πb4

32a5

1√
E

+ o(E−1/2) if E → 0+
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Eigenvalues
Let us plat the lowest eigenvalues of such a region as functions of b:

0 0.1 0.2 0.3 0.4 0.5 0.6

b

0

0.2

0.4

0.6

0.8

1

E
n

As expected the ground state is close to the continuum threshold for
(sufficiently) large values of b and the whole discrete spectrum disappears
in the limit b →∞

, while for small b the region has a large bulge in the
center and the spectral bottom drops to appropriately low values.

Remark: Experimentalists often label their spirals as Archimedean, but in
fact they are not, being produced by coiling fibers of a fixed cross section,
hence their transverse width is constant with respect to θ, in contrast to
the true Archimedean spiral. Such waveguides behave asymptotically
rather as the current interpolation with b

a = (2π)−1/4 ≈ 0.632.
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An eigenfunction example

Here is the eigenfunction with E14 = 0.999952 referring to b = (2π)−1/4.

The difference from the two-arm Archimedean region is hardly perceptible
by a naked eye, however, the discrete spectrum is now not only non-void
but it is rich with the eigenfunctions the tails of which have a distinctively
quasi-one-dimensional character.
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What to bring home from Lecture II

If a particle is confined to a hard-wall tube, a nontrivial geometry
of the confinement gives rise to an effective interaction, attractive
in case of bends.

This effect is robust. not restricted to bends, and of a genuine
quantum nature having no classical counterpart

If the particle motion is restricted to a layer of constant width, it is
the global geometry of the confinement that plays a decisive role.

The existence of bound states in spiral waveguides depends on the
asymptotic behavior of their width; the problem is subtle in the
asymptotically Archimedean case.

In contrast to mathematics, ‘physicist’s Archimedean waveguides’
have numerous weakly bound states.
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