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Leaky quantum graphs and their generalizations
Let us turn to the other quantum graph weakness mentioned in the
opening and look for an alternative. The model to examine now is
based on singular Schrödinger operators that can formally written as

Hα,Γ = −∆−αδ(x − Γ), α > 0,

in L2(Rd), where Γ is a graph understood as a subset of Rd .

Why is it interesting? One expects that a state from the negative spectral
subspace will remain localized close to Γ, the closer the larger α is, and at
the same time, the whole Rd is accessible to it as the classically forbidden
region, so the particle is able to tunnel from one point to another.

In fact, the dimension of Γ is not that important – what matters is rather
its codimension – and we begin with the simplest situation where Γ is a
smooth manifold in Rd having in mind primarily three important cases:

curves in R2, surfaces in R3, and curves in R3

We can regard them as waveguides of a sort, with a finite size of the
transverse localization, and building blocks of more complicated structures.
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A δ-interaction supported by a manifold
A natural way to define a singular Schrödinger operator on manifold
of codim Γ = 1 is to employ the appropriate quadratic form, namely

qδ,α[ψ] := ∥∇ψ∥2L2(Rd ) − α∥f |Γ∥
2
L2(Γ)

with the domain H1(Rd) and to use the first representation theorem to
define a unique self-adjoint operator Hα,Γ

; it is enough that Γ is Lipschitz
J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ-interactions supported
on hypersurfaces, Math. Nachr. 290 (2017), 1215–1248.

If Γ is a smooth manifold with codim Γ = 1 one can alternatively use
boundary conditions: Hα,Γ acts as −∆ on functions from H2

loc(Rd \ Γ),
which are continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣∣∣∣
+

− ∂ψ

∂n
(x)

∣∣∣∣
−
= −α(x)ψ(x)

This explains the formal expression as describing the attractive
δ-interaction of strength α(x) perpendicular to Γ at the point x .

Alternatively, one sometimes uses the symbol −∆δ,α for this operator;
we will be mostly concerned with the situation where α is a constant.
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The case codim Γ = 2

This is more complicated but one can use again boundary conditions,
appropriately modified. To begin with, for an infinite curve Γ referring to
a map γ : R→ R3 we have to assume in addition that there is a tubular
neighbourhood of Γ which does not intersect itself

We employ Frenet’s frame (t(s), b(s), n(s)) for Γ. Given ξ, η ∈ R, we set
r = (ξ2+η2)1/2 and define family of ‘shifted’ curves

t

b

n

Γ
Γr

Γr ≡ Γξηr :=
{
γr (s) ≡ γξηr (s) := γ(s) + ξb(s) + ηn(s)

}
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The case codim Γ = 2, continued
The restriction of f ∈W 2,2

loc (R
3 \ Γ) to Γr is well defined for small r ;

we say that f ∈W 2,2
loc (R

3 \ Γ) ∩ L2(R3) belongs to Υ if the limits

Ξ(f )(s) := − lim
r→0

1

ln r
f ↾Γr (s),

Ω(f )(s) := lim
r→0

[
f ↾Γr (s) + Ξ(f )(s)ln r

]
,

exist a.e. in R, are independent of the direction 1
r (ξ, η) in which they are

taken, and define functions belonging to L2(R).

Then the corresponding singular Schrödinger operator Hα,Γ has the domain

{ g ∈ Υ : 2παΞ(g)(s) = Ω(g)(s) }
and acts as

−Hα,Γf = −∆f for x ∈ R3 \ Γ

Note that absence of the interaction corresponds α =∞ !

Similarly one can treat the case codim Γ = 3, replacing 1
2π ln r by 1

4πr , but
this is more a mathematical exercise.
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Spectral analysis: Birman-Schwinger principle

Theorem (Birman-Schwinger principle)

Let Hλ := H0 + λV on L2(Rd), where H0 = −∆ and V belongs to a
suitable class. Then −κ2 is an eigenvalue of Hλ for some κ > 0 if and
only if the operator

Kκ := |V |1/2(H0+ κ2)−1V 1/2

has eigenvalue −λ−1, and moreover, their multiplicities are the same.

For singular Schrödinger operators we consider here, this makes no sense,
but we have an analogous result in which the above Kκ is replaced by an
integral operator on L2(Γ) with the kernel (H0+ κ2)−1(·, ·).
For instance, if Γ is a curve in the plane, Hα,Γ has eigenvalue −κ2 if and
only if

α

2π

∫
Γ
K0(κ|Γ(s)− Γ(s ′)|)ϕ(s ′)ds ′ = ϕ(s),

where s is the arc length of the curve Γ.
J.F. Brasche, P.E., Yu.A. Kuperin, P. Šeba: Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184
(1994), 112–139.
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Spectrum of −∆δ,α

The spectrum is determined both by the geometry of Γ and the coupling
function α, in particular, by its sign.

If Γ is compact, it is easy to see that σess(−∆δ,α) = R+.

On the other hand, the essential spectrum may change if the support Γ is
non-compact. As an example, take a line in the plane and suppose that α
is constant and positive; by separation of variables we find easily that
σess(−∆δ,α) = [−1

4α
2,∞) .

The question about the discrete spectrum is more involved. Suppose first
that interaction support is finite, |Γ| <∞.

It is clear that σdisc(−∆δ,α) = ∅ if the interaction is repulsive, α ≤ 0.
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2,∞) .

The question about the discrete spectrum is more involved. Suppose first
that interaction support is finite, |Γ| <∞.

It is clear that σdisc(−∆δ,α) = ∅ if the interaction is repulsive, α ≤ 0.
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Spectrum of −∆δ,α

On the other hand, the existence of a negative discrete spectrum for
an attractive coupling is dimension dependent.

Consider for simplicity a constant α. For d = 2 bound states then exist
whenever |Γ| > 0, in particular, we have a weak-coupling expansion

λ(α) =
(
CΓ + o(1)

)
exp

(
− 4π

α|Γ|

)
as α|Γ| → 0+

S. Kondej, V. Lotoreichik: Weakly coupled bound state of 2-D Schrödinger operator with potential-measure, J. Math.
Anal. Appl. 420 (2014), 1416–1438.

On the other hand, for d = 3 the singular coupling must exceed a critical
value. As an example, let Γ be a sphere of radius R > 0 in R3, then we
have

σdisc(Hα,Γ) ̸= ∅ if and only if αR > 1,

and the same obviously holds in dimensions d > 3.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A:
Mat. Gen. 20 (1987), 3687–3712.
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A δ-interaction supported by infinite curves
A geometrically induced discrete spectrum may exist even if Γ is
infinite and inf σess(−∆δ,α) < 0. Consider, for instance, a non-straight,
piecewise C 1-smooth curve Γ : R→ R2 parameterized by its arc length,
|Γ(s)− Γ(s ′)| ≤ |s − s ′|, assuming in addition that

|Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s ′)|
|s − s ′|

≤ d
[
1 + |s + s ′|2µ

]−1/2

in the sector Sω :=
{
(s, s ′) : ω < s

s′ < ω−1
}

Theorem

Under these assumptions, σess(−∆δ,α) = [−1
4α

2,∞) and −∆δ,α has at
least one eigenvalue below the threshold −1

4α
2.

P. Exner, T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439–1450.
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Geometrically induced bound states, continued

The similarity with the existence of bound states in bent Dirichlet tubes
is obvious

. The proof, however, is completely different:

The result is obtained via (generalized) Birman-Schwinger
principle regarding the bending a perturbation of the straight line.

The crucial observation is that – in view of the 2D free resolvent
kernel properties – this perturbation is sign definite and compact.

The best way to illustrate the main steps of the proof is to draw
the spectrum of Birman-Schwinger operator in dependence on the
spectral parameter κ.
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Pictorial sketch of the proof

in the straight case σ(Rκα,Γ0) = [0, 12α] is checked directly

using a trial function one proves that supσ(Rκα,Γ) >
1
2α

from the asymptotic straightness, the perturbation is compact
so that the ‘added’ spectrum consists of eigenvalues at most

the spectrum depends continuously on κ and shrinks to zero
as κ→∞, hence there is a crossing to the right of 1

2α
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Geometrically induced bound states, continued
Higher codimension: for a curve in R3 which is bent or locally
deformed but asymptotically straight we have an analogous result
under slightly stronger regularity assumptions.

P. Exner, S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in R3,
Ann. Henri Poincaré 3 (2002), 967–981.

Higher dimensions: here the situation is more complicated; for
smooth curved surfaces Γ ⊂ R3 an analogous result is proved in
the strong coupling asymptotic regime, α→∞, only.

P. Exner, S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A:
Math. Gen. 36 (2003), 443–457.

On the other hand, we have an example of a conical surface of an
opening angle θ ∈ (0, 12π) in R3, where for any constant α > 0 we
have σess(−∆δ,α) = R+ and an infinite numbers of eigenvalues
below −1

4α
2 accumulating at the threshold. The similarity with the

infinite discrete spectrum of conical Dirichlet layers is again clear.

J. Behrndt, P.E., V. Lotoreichik: Schrödinger operators with δ-interactions supported on conical surfaces,
J. Phys. A: Math. Theor. 47 (2014), 355202.
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Geometrically induced bound states, continued

Moreover, the above result remain valid for any local deformation
of the conical surface. We also know the eigenvalue accumulation
rate for conical layers

N
−1
4α

2 − E
(−∆δ,α) ∼

cot θ

4π
| lnE | , E → 0+ ,

and a similar formula holds for noncylindrical cones.
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrödinger operators with δ-interactions on
conical surfaces, Comm. PDE 41 (2016), 999–1028.

T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions concentrated near conical surfaces,
Appl. Anal. 97 (2018) 1628–1649.

On the other hand, the result is again dimension-dependent:
for a conical surface in Rd , d > 3, we have σdisc(−∆δ,α) = ∅
Implications for more complicated Lipschitz partitions: let Γ̃ ⊃ Γ
holds in the set sense, then Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum
thresholds are the same – which is often easy to establish – then
σdisc(Hα,Γ̃) ̸= ∅ whenever the same is true for σdisc(Hα,Γ)

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture III September 13, 2023 - 13 -



Geometrically induced bound states, continued

Moreover, the above result remain valid for any local deformation
of the conical surface. We also know the eigenvalue accumulation
rate for conical layers

N
−1
4α

2 − E
(−∆δ,α) ∼

cot θ

4π
| lnE | , E → 0+ ,

and a similar formula holds for noncylindrical cones.
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrödinger operators with δ-interactions on
conical surfaces, Comm. PDE 41 (2016), 999–1028.

T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions concentrated near conical surfaces,
Appl. Anal. 97 (2018) 1628–1649.

On the other hand, the result is again dimension-dependent:
for a conical surface in Rd , d > 3, we have σdisc(−∆δ,α) = ∅

Implications for more complicated Lipschitz partitions: let Γ̃ ⊃ Γ
holds in the set sense, then Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum
thresholds are the same – which is often easy to establish – then
σdisc(Hα,Γ̃) ̸= ∅ whenever the same is true for σdisc(Hα,Γ)

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture III September 13, 2023 - 13 -



Geometrically induced bound states, continued

Moreover, the above result remain valid for any local deformation
of the conical surface. We also know the eigenvalue accumulation
rate for conical layers

N
−1
4α

2 − E
(−∆δ,α) ∼

cot θ

4π
| lnE | , E → 0+ ,

and a similar formula holds for noncylindrical cones.
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrödinger operators with δ-interactions on
conical surfaces, Comm. PDE 41 (2016), 999–1028.

T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions concentrated near conical surfaces,
Appl. Anal. 97 (2018) 1628–1649.

On the other hand, the result is again dimension-dependent:
for a conical surface in Rd , d > 3, we have σdisc(−∆δ,α) = ∅
Implications for more complicated Lipschitz partitions: let Γ̃ ⊃ Γ
holds in the set sense, then Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum
thresholds are the same – which is often easy to establish – then
σdisc(Hα,Γ̃) ̸= ∅ whenever the same is true for σdisc(Hα,Γ)

P. Exner: Guided quantum dynamics SOMPATY Summer School – Lecture III September 13, 2023 - 13 -



Approximation of the singular interaction
The question naturally arises about the meaning of such models

. To
address it, let Γ be a C 4 smooth curve in R2 with a strip neighborhood
which does not intersect itself, parametrized by the locally orthogonal
parallel coordinates s, u mentioned in Lecture II.

Given a fixed function V ∈ L∞(−1, 1) we consider potentials with the
support in the strip Σϵ := {(s, u) : |u| < ϵ} given by

Vϵ(x) =

{
0 v ̸∈ Σϵ

−1
ϵV
(
u
ϵ

)
v ∈ Σϵ

In [E-Ichinose’01, loc.cit.] we proved the following convergence result:

−∆+ Vϵ → Hα,Γ in the norm-resolvent sense as ϵ→ 0,

where α :=
∫ 1
−1 V (u)du. This claim can be substantially generalized as

shown in [Behrndt-E-Holzmann-Lotoreichik’17, loc.cit.], where

Γ is a C 2-smooth orientable surface, codim Γ = 1, in Rn, n ≥ 2,
the ‘target’ coupling strength α is any L∞ function on Γ, modulo
some technical assumptions.
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Given a fixed function V ∈ L∞(−1, 1) we consider potentials with the
support in the strip Σϵ := {(s, u) : |u| < ϵ} given by

Vϵ(x) =

{
0 v ̸∈ Σϵ

−1
ϵV
(
u
ϵ

)
v ∈ Σϵ

In [E-Ichinose’01, loc.cit.] we proved the following convergence result:

−∆+ Vϵ → Hα,Γ in the norm-resolvent sense as ϵ→ 0,

where α :=
∫ 1
−1 V (u) du. This claim can be substantially generalized as

shown in [Behrndt-E-Holzmann-Lotoreichik’17, loc.cit.], where

Γ is a C 2-smooth orientable surface, codim Γ = 1, in Rn, n ≥ 2,
the ‘target’ coupling strength α is any L∞ function on Γ, modulo
some technical assumptions.
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Point interaction approximation
The above approximation gives meaning to the δ interaction but it
useless for computational purposes. To get a practical tool to solve the
spectral problem for our operators, we replace the singular interaction
supported by Γ by an array Y = {yj} of point interactions

We employ generalized boundary values at yj ∈ Y using the expansion

ψ(x) = − 1

2π
log |x − yj | L0(ψ, yj) + L1(ψ, yj) +O(|x − yj |)

a local self-adjoint extension is then given by

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, second edition, Amer.
Math. Soc., Providence, R.I., 2005.

To guess how the coupling parameters of the point interaction should be
chosen one can compare Hα,Γ for a straight Γ with the solvable model of
a straight-polymer

← r r r r r r r rαn

ℓ/n
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Point interaction approximation, contd.

To get the same spectral threshold we need αn = αn which naturally
means that individual point interactions get weaker. Hence we
approximate Hα,Γ by point-interaction Hamiltonians Hαn,Yn with
αn = α|Yn|, where |Yn| := ♯Yn

. Then we have

Theorem

Let a family {Yn} of finite sets Yn ⊂ Γ ⊂ R2 be such that

1

|Yn|
∑
y∈Yn

f (y) →
∫
Γ
f dm

holds for any bounded continuous f : Γ→ C, together with technical
conditions, then Hαn,Yn → Hα,Γ in the strong resolvent sense as n→∞.

P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003),
10173–10193.
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Point interaction approximation: remarks

The limit is a homogenization of a sort

. Eigenfunctions of the
approximating operator which look as
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will in the limit produce the corresponding eigenfunction of Hα,Γ,
continuous and locally bounded at the curve Γ having a jump of the
normal derivative there (the convergence is slower than O(n−1)).

Similarly one can approximate surfaces Γ by 3D point interactions.
J.F. Brasche, R. Figari, A. Teta: Singular Schrödinger operators as limits of point interaction Hamiltonians,
Potential Anal. 8 (1998), 163–178.

There is a trick: consider approximation of ϵ∆2 −∆− αδ(x − Γ)
and then take ϵ→ 0; this gives a norm-resolvent convergence.

J.F. Brasche, K. Ožanová: Convergence of Schrödinger operators, SIAM J. Math. Anal. 39 (2007), 281–297.
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An application: scattering on leaky wires

To give an example how one can use the approximation, consider
the scattering problem on a leaky graph with semi-infinite ‘leads’.
What is known and expected in this case?

What is the ‘free’ operator? Obviously −∆ is not a good
candidate, rather Hα,Γ for a straight line Γ; recall that we are
particularly interested in energy interval (−1

4α
2, 0), i.e. the

one-dimensional transport of states laterally bound to Γ.

Existence and completeness was proved if the external leads
belong to a line; there is also a general existence result.

P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys. A38 (2005), 4865–4874.

J. Dittrich: Scattering of particles bounded to infinite planar curve, Rev. Math. Phys. 32 (2020), 2050029.

It is expected that for strong coupling the states are strongly
transversally localized and the motion would be effectively
one-dimensional, while generally the tunneling may play role.
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An example: a bottleneck curve

Recall a well-known physicist’s trick to study resonances by exploring
spectral properties of the problem cut to a finite length L and to look
for avoided crossings in the L eigenvalue dependence.

G.A. Hagedorn, B. Meller: Resonances in a box, J. Math. Phys. 41 (2000), 103–117.

Consider a straight line deformation
which shaped as an open loop with a
bottleneck the width a of which we
will vary ←→

a

← → ← →
L L

If Γ is a straight line, the transverse eigenfunction is e−α|y |/2, hence
the distance at which tunneling becomes significant is ≈ 4α−1. In the
example, we choose α = 1.
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An example: a bottleneck curve
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Narrow bottleneck, a = 2.9
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Even narrower one, a = 1.9

We see that if the bottleneck width is small enough, the system exhibits
resonances, obviously caused by tunneling between adjacent parts.

Those are absent in the ‘conventional’ quantum graph where the geometry
enters through the edge lengths only, and this will not change even if we
add a curvature-induced potential, say, −1

4γ(s)
2; to see that, it is enough

to remove the bottleneck by ‘flipping’ one half of the curve.

On the other hand, such a potential represents a way through which the
conventional and leaky graphs are related. This will be our next topic.
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to remove the bottleneck by ‘flipping’ one half of the curve.

On the other hand, such a potential represents a way through which the
conventional and leaky graphs are related. This will be our next topic.
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Strong δ interaction asymptotics
If the attraction is strong the motion is strongly localized transversally
and the geometry of Γ can be manifested in the discrete spectrum of the
operator Hα,Γ = −∆− αδ(x − Γ).

Let us start with the simplest situation of a curve in the plane, avoiding
first various ‘dangerous’ situations that may occur, specifically angles,
cusps, self-intersections, and ends. Then we have the following result:

Theorem

Let Γ be a C 4 smooth curve in R2 without ends, either a closed loop or
infinite, asymtotically straight and without ‘near crossings’. In the limit
α→∞ the jth eigenvalue of Hα,Γ behaves as

λj(α) = −
α2

4
+ µj +O(α−1 lnα)

where µj is the jth eigenvalue of SΓ = − d2

ds2
− 1

4κ(s)
2 on L2(0, |Γ|) or

L2(R), respectively, where κ is curvature of Γ.

P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J.
Geom. Phys. 41 (2002), 344–358.
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Strong δ interaction asymptotics

Note that the restriction made were essential. Consider two halflines
meeting at a non-straight angle. We know that σdisc(Hα,Γ) ̸= ∅ and in
view of the self-similarity of Γ, a simple scaling argument shows that its
eigenvalues behave as cα2 with some c < −1

4 with respect to α.

Furthermore, if curve Γ has a cusp of degree p > 1, that is, it is locally
homothetic to the graph of the function f (x) = |x |1/p, the strong coupling
asymptotics of the jth eigenvalue is

λj(α) = −α2 + cj(p)α
6

p+2 +O
(
α

6
p+2

−ηp),
where cj(p) and ηp are (explicitly known) positive constants.

B. Flamencourt, K. Pankrashkin: Strong coupling asymptotics for δ-interactions supported by curves with cusps, J.
Math. Anal. Appl. 491 (2020), 124287.

Under similar hypotheses on smoothness and absence of boundaries, the
claim extends to higher dimensions, specifically

for a curve in R2 we replace −1
4α

2 by ϵα = −4 e2(−2πα+ψ(1)).
P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by
a curve in R3, Rev. Math. Phys. 16 (2004), 559–582.
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Strong δ interaction asymptotics

For a surface in R3 we replace the above S by SΓ = −∆Γ + K −M2,
where −∆Γ is Laplace-Beltrami operator on Γ and K ,M, respectively,
are the corresponding Gauss and mean curvatures.
P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A: Math. Gen. 36
(2003), 443-457.

In a similar way one can treat periodic systems
using the Bloch (Floquet, Gel’fand) decomposi-
tion: there is a unitary U such that UHα,ΓU−1=∫ ⊕
[0,2π)r Hα,θ dθ and σ(Hα,Γ)=

⋃
[0,2π)r σ(Hα,θ).

 It is important to choose the periodic cells C of
the space and ΓC of the manifold consistently,
ΓC = Γ ∩ C. Note that ΓC is not necessarily a
‘straight slab’, even for d = 2, and for d = 3 it
need not be simply connected.
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Periodic manifold asymptotics

Theorem

Let Γ be a C 4-smooth r -periodic manifold without boundary. The strong
coupling asymptotic behavior of the jth Bloch eigenvalue is

λj(α, θ) = −
1

4
α2 + µj(θ) +O(α−1 lnα) as α→∞

for codim Γ = 1

and

λj(α, θ) = ϵα + µj(θ) +O(eπα) as α→ −∞
for codim Γ = 2, where µj(θ) is the jth eigenvalue of the appropriate
comparison operator indicated above with Bloch boundary conditions.
The error terms are uniform w.r.t. θ.

P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by
a curve in R3, Rev. Math. Phys. 16 (2004), 559-582.

Corollary

If dimΓ = 1 and coupling is strong enough, Hα,Γ has open spectral gaps.

K. Yoshitomi: Band gap of the spectrum in periodically curved quantum waveguides, J. Diff. Eqs 142 (1998), 123–166.
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Strong δ interactions: sketch of the argument
Three essential ingredients are involved. The first
is Dirichlet-Neumann bracketing imposed at the
boundary Σa of the tubular neighborhood of Γ of
radius/halfwidth a, here sketched for a loop in R3.

 

This squeezes Hα,Γ between a pair of ‘disconnected’ operators, and since
we are interested in negative eigenvalues, we have to care about the tube
part only because the Dirichlet/Neumann Laplacian in the remaining part
of Rd is positive.

Then we use inside the tube the natural curvilinear (Fermi, parallel)
coordinates mentioned before, and estimate the coefficients to squeeze
Hα,Γ between operators with separated variables. For a curve in R2, e.g.
their longitudinal parts are

U±
a = −(1∓ a∥κ∥∞)−2 d2

ds2
+ V±(s)

with PBC in the case of a loop, where V−(s) ≤ 1
4κ

2(s) ≤ V+(s) with an
O(a) error. In other words, the operators U±

a are O(a) close to SΓ.
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Strong δ interactions: sketch of the argument
On the other hand, the transverse operators are related to the forms

t+a,α[f ] =

∫ a

−a
|f ′(u)|2 du − α|f (0)|2

and t−a,α[f ] = t−a,α[f ]− ∥k∥∞(|f (a)|2 + |f (−a)|2) defined on the Sobolev

spaces W 1,2
0 (−a, a) and W 1,2(−a, a), respectively

. For large α the
presence of the boundaries cause an exponentially small error:

Lemma

There is a positive cN such that T±
α,a has for α large enough a single

negative eigenvalue κ±α,a satisfying

−α
2

4

(
1 + cN e−αa/2

)
< κ−α,a < −

α2

4
< κ+α,a < −

α2

4

(
1− 8 e−αa/2

)
Finally, we relate a to α by choosing a = 6α−1 lnα which yields the result.

In the other cases the proof is analogous. If codim Γ = 2 the transverse
part is the Dirichlet/Neumann disc of radius r with the point interaction
in the center; the error is again exponentially small as α→ −∞.
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Curves with ends
We have seen that the described method yields for finite or semifinite
curves gives the asymptotics for the number of bound states, but fails to
do that for individual eigenvalues — the difference between Dirichlet and
Neumann conditions imposed on the comparison operator is too big.

One conjectures that the ‘correct’ boundary conditions are Dirichlet. For
a finite planar curve this is indeed the case:

Theorem

Suppose Γ is a C 4 smooth open arc in R2 of length L with regular ends;
then the strong-coupling limit of the jth negative eigenvalue of Hα,Γ is

λj(α) = −
1

4
α2 + µj +O

( lnα
α

)
as α→ +∞

where µj is the jth eigenvalue of the operator − d2

ds2
− 1

4κ(s)
2 on L2(0, L)

with Dirichlet b.c., where κ(s) is as before the signed curvature of Γ at
the point s ∈ (0, L).

P.E., K. Pankrashkin: Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by
an open arc, Comm. PDE 39 (2014), 193–212.
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a finite planar curve this is indeed the case:

Theorem

Suppose Γ is a C 4 smooth open arc in R2 of length L with regular ends;
then the strong-coupling limit of the jth negative eigenvalue of Hα,Γ is

λj(α) = −
1

4
α2 + µj +O

( lnα
α

)
as α→ +∞

where µj is the jth eigenvalue of the operator − d2

ds2
− 1

4κ(s)
2 on L2(0, L)

with Dirichlet b.c., where κ(s) is as before the signed curvature of Γ at
the point s ∈ (0, L).

P.E., K. Pankrashkin: Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by
an open arc, Comm. PDE 39 (2014), 193–212.
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Curves with ends: sketch of the argument

We use again bracketing estimates but now they have to be modified.
The upper (Dirichlet) one works as before, while for the lower (Neumann)
one we employ the fact that the arc Γ has by assumption regular ends,
meaning that it can be extended smoothly in the vicinity of its endpoints.

Recall the generalized Birman-Schwinget principle; it allows us to express
solution to Hα,Γψj = −µ2j ψj as ψj(x) =

1
2π

∫
Γ K0(µj |x − Γ(s)|)ϕj(s)ds, in

other words, as convolutions of the Laplacian Green’s function with the
corresponding BS eigenfunctions, Rµjα,Γϕj = ϕj .

We choose an ‘extended’ tubular neighborhood,
at each endpoint longer by a := 6

α lnα. Now
we loose the advantage of variable separation
but with the help of the above formula one can
check that the Neumann condition imposed at
this distance from the curve has an effect which
can be included into the error term. An extended neighbourhood
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Curves with ends, codim Γ = 2

Using a similar argument, just technically a bit more involved, one can
obtain asymptotic results for an arc in R3:

Theorem

Let Hα,Γ correspond to a finite, non-closed C 4 smooth curve in R3 with
regular ends having length L and the global Frenet frame.

(i) The cardinality of the discrete spectrum behaves asymptotically as

♯σdisc(Hα,Γ) =
L

π
(−ϵα)1/2(1 +O(eπα)) as α→ −∞.

(ii) Furthermore, the jth eigenvalue of Hα,Γ has the expansion

λj(Hα,Γ) = ϵα + µj +O(eπα) for α→ −∞,

where µj corresponds to same the operator S on L2(0, L) as above.

P.E., S. Kondej: Strong coupling asymptotics for Schrödinger operators with an interaction supported by an open arc in
three dimensions, Rep. Math. Phys. 77 (2016), 1–17.
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Surfaces with a boundary
Let Γ ⊂ R3 be now a C 4-smooth relatively compact orientable surface
with a compact Lipschitz boundary ∂Γ. In addition, we suppose that Γ
can be extended through the boundary, in other words, that there exists
a larger C 4-smooth surface Γ2 such that Γ ⊂ Γ2.

We consider again the comparison operator SΓ = −∆D
Γ + K −M2, where

−∆D
Γ is Laplace-Beltrami operator on Γ, now with Dirichlet condition at

∂Γ, and K ,M, respectively, are the Gauss and mean curvatures of Γ. We
denote eigenvalues of this operator as µDj , j ∈ N, then we have

Theorem

Let Γ be as above, then for any fixed j ∈ N we have

λj(Hα,Γ) = −
α2

4
+ µDj + o(1) as α→∞ .

If, in addition, Γ has a C 2 boundary, then the remainder estimate can be
replaced by O(α−1 lnα).

J. Dittrich, P.E., Ch. Kühn, K. Pankrashkin: On eigenvalue asymptotics for strong δ-interactions supported by surfaces
with boundaries, Asympt. Anal. 97 (2016), 1–25.
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Another asymptotics: slightly bent curves

A different asymptotics type concerns weak geometric perturbations.
The simplest example is a broken line Γ = Γβ with a small angle β.

         

````````̀

   
  
β

We keep α fixed and denote HΓβ := Hα,Γβ . We know that this operator
has eigenvalues, a single one for small β.

For slightly bent Dirichlet tubes one derives using BS principle that the
gap is proportional to the fourth power of the bending angle; led by this
analogy we conjecture that

λ(HΓβ ) = −
1

4
α2 + aβ4 + o(β4)

holds with some constant a < 0 as β → 0+.

The question now is (a) what is the coefficient a, and (b) what is the class
of curves for which such a formula holds.
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Weakly bent curves, continued

Let us first specify the class of curves we shall consider: Γ will be a
continuous and piecewise C 2 infinite planar curve without self-intersections
parametrized by its arc length, i.e. the graph of a piecewise C 2-smooth
function Γ : R→ R2 such that |Γ̇(s)| = 1. Moreover,

there exists a c ∈ (0, 1) such that |Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds
for s, s ′ ∈ R excluding, in particular, U shapes.

there are real numbers s1 > s2 and straight lines Σi , i = 1, 2, such
that Γ coincides with Σ1 for s ≤ s1 and with Σ2 for s ≥ s2,

one-sided limits of Γ̇ exist at the points where the function Γ̈ is
discontinuous, i.e. Γ has angles there.

In particular, the signed curvature γ(s) = Γ̇2(s)Γ̈1(s)− Γ̇1(s)Γ̈2(s) is
piecewise continuous and the one-sided limits of Γ̇, i.e. tangent vectors
to the curve at the points of discontinuity exist. We denote them as
Π = {pi}♯Πi=1 and shall speak of them as of vertices. Consequently, Γ
consists of ♯Π+ 1 simple arcs or edges, each having as its endpoints
one or two of the vertices.
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Weakly bent curves, continued
The curvature integral describes bending of the curve. Specifically,
the angle between the tangents at the points Γ(s) and Γ(s ′) equals

ϕ(s, s ′) =
∑

pi∈(s,s′)

g(pi ) +

∫
(s,s′)\Π

γ(ζ) dζ,

where g(pi ) ∈ (0, π) is the exterior angle of the two adjacent edges
of Γ meeting at the vertex pi .

Alternatively, we can understand ϕ(s, s ′) as the integral over the interval
(s, s ′) of γ̃ : γ̃(s) = γ(s) +

∑
p∈Π g(p) δ(s − p). By assumption γ, γ̃ are

compactly supported, thus ϕ(s, s ′) has the same value for all s < s1 and
s2 < s ′ which we shall call the total bending.

One can reconstruct Γ from γ̃, uniquely up to Euclidean transformations,

Γ(s) =

(∫ s

0
cosϕ(u, 0)du ,

∫ s

0
sinϕ(u, 0) du

)
.
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Weakly bent curves, continued

Now we introduce the one-parameter family of ‘scaled’ curves Γβ,

Γβ(s) =

(∫ s

0
cosβϕ(u, 0)du ,

∫ s

0
sinβϕ(u, 0))du

)
, |β| ∈ (0, 1] .

Note that depending on (non)vanishing of the total bending of Γ the limit
β → 0+ may have a different meaning, say ‘straightening’ or ‘flattening’.

Next we define an integral operator A : L2(R)→ L2(R) through its kernel,

A(s, s ′) := α4

32π
K ′
0

(α
2
|s − s ′|

)(
|s − s ′|−1

(∫ s

s′
ϕ(s ′′)ds ′′

)2

−
∫ s

s′
ϕ(s ′′)2ds ′′

)
.

Lemma

Under the stated assumptions, we have
∫
R×RA(s, s

′) ds ds ′ <∞.
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Weakly bent curves, the result
With these prerequisites, we are finally able to state the sought weak-
bending result:

Theorem

There is a β0 > 0 such that for any β ∈ (−β0, 0)∪ (0, β0) the operator HΓβ

has a unique eigenvalue λ(HΓβ ) which admits the asymptotic expansion

λ(HΓβ ) = −
α2

4
−
(∫

R×R
A(s, s ′)ds ds ′

)2

β4 + o(β4) .

P.E., S. Kondej: Gap asymptotics in a weakly bent leaky quantum wire, J. Phys. A48 (2015), 495301

Proof is again based on the generalized Birman-Schwinger principle which
we recall here: it says that

−κ2 ∈ σd(HΓβ ) ⇔ ker(I − αQΓβ (κ)) ̸= ∅ ,
where QΓβ (κ) is the integral operator with the kernel

QΓβ (κ; s, s
′) =

1

2π
K0(κ|Γβ(s)− Γβ(s

′)|) ;

moreover, we have dimker(HΓβ + κ2) = dimker(I − αQΓβ (κ)).
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has a unique eigenvalue λ(HΓβ ) which admits the asymptotic expansion

λ(HΓβ ) = −
α2

4
−
(∫

R×R
A(s, s ′)ds ds ′

)2

β4 + o(β4) .

P.E., S. Kondej: Gap asymptotics in a weakly bent leaky quantum wire, J. Phys. A48 (2015), 495301

Proof is again based on the generalized Birman-Schwinger principle which
we recall here: it says that

−κ2 ∈ σd(HΓβ ) ⇔ ker(I − αQΓβ (κ)) ̸= ∅ ,
where QΓβ (κ) is the integral operator with the kernel

QΓβ (κ; s, s
′) =

1

2π
K0(κ|Γβ(s)− Γβ(s

′)|) ;

moreover, we have dimker(HΓβ + κ2) = dimker(I − αQΓβ (κ)).
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Weakly bent curves, continued

One has to compare with the Birman-Schwinger operator corresponding
to the straight line which has the kernel K0

(
κ
2 |s − s ′|

)
in the vicinity of

the point κ = 1
2α corresponding to threshold of the essential spectrum.

Let us return to the broken-line example: in this case A(s, s ′) can be
found easily, it vanishes if s, s ′ have the same sign, being otherwise

A(s, s ′) = α4

32π
K ′
0

(α
2
|s − s ′|

) |ss ′|
|s − s ′|

χΩ(s, s
′) ,

where χΩ(·, ·) is the characteristic function of the set Ω, the union of
the second and fourth quadrant. The integral of A(s, s ′) over the both
variable can be computed explicitly giving

−1
4α

2 − λ(HΓβ )

−1
4α

2
= − 1

9π2
β4 + o(β4) .
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Weakly deformed planes

We can pose the same question in dimension three but it is more subtle,
because then global properties of the interaction support play now role

;
recall that a conical surface, however ‘flat’ it may be, i.e. for any θ > 0,
gives rise to an infinite discrete spectrum

Let us thus restrict our attention to locally deformed planes: consider
Γ = Γβ(f ) ⊂ R3 with β > 0 given by

Γβ :=
{
(x1, x2, x3) ∈ R3 : x3 = βf (x1, x2)

}
⊂ R3 ,

where f : R2 → R is a nonzero C 2-smooth, compactly supported function
and ask how the spectrum of Hα,β := −∆− αδ(x − Γβ) in the asymptotic
regime β → 0+.
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The asymptotic expansion

The method to use is again Birman-Schwinger analysis; it yields

Theorem

Let α > 0 be fixed and set

Dα,f :=

∫
R2

|p|2
(
α2 − 2α3√

4|p|2 + α2 + α

)
|f̂ (p)|2dp > 0 ,

where f̂ is the Fourier transform of f . Then #σdisc(Hα,β) = 1 holds for
all sufficiently small β > 0 and, moreover, λα1 (β) admits the asymptotic
expansion

λα1 (β) = −
α2

4
− exp

(
− 16π

Dα,f β2

)(
1 + o(1)

)
as β → 0+

P.E., S. Kondej, V. Lotoreichik: Asymptotics of the bound state induced by δ-interaction supported on a weakly
deformed plane, J. Math. Phys. 59 (2018), 013051
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Soft quantum waveguides

To remove both deficiencies mentioned in the opening of Lecture II we
pass to a more realistic model with the δ replaced by a regular potential
well.

For simplicity we will work in the simplest two-dimensional setting. To
begin with, let us collect the hypotheses we will use:

Let Γ : R→ R2 be an infinite and smooth planar curve without self-
intersections, parametrized by its arc length s. We introduce again
the signed curvature γ : γ(s) = (Γ̇2Γ̈1 − Γ̇1Γ̈2)(s) and assume that

a Γ is C 2-smooth so, in particular, γ(s) makes sense,
b γ is either of compact support, supp γ ⊂ [−s0, s0] for some s0 > 0, or

Γ is C 4-smooth and γ(s) together with its first and second derivatives
tend to zero as |s| → ∞,

c |Γ(s)− Γ(s ′)| → ∞ holds as |s − s ′| → ∞ (no U-shapes, etc.).
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The interaction support

Recall that one can reconstruct the curve from the knowledge of γ, up
to Euclidean transformations: putting β(s2, s1) :=

∫ s2
s1
γ(s) ds, we have

Γ(s) =
(
x1 +

∫ s

s0

cosβ(s1, s0)ds1, x2 −
∫ s

s0

sinβ(s1, s0)ds1
)

for some s0 ∈ R and x = (x1, x2) ∈ R2

. Next we define the strip Ωa by

Ωa := {x ∈ R2 : dist(x , Γ) < a},
in particular, Ωa

0 := R× (−a, a) corresponds to a straight line for which
we use the symbol Γ0. We assume that

d Ωa does not intersect itself, in particular, a∥γ∥∞ < 1 holds for the
strip halfwidth of Γ

which ensures that the points of Ωa can be uniquely parametrized as
follows,

x(s, u) =
(
Γ1(s)− uΓ̇2(s), Γ2(s) + uΓ̇1(s)

)
,

where N(s) = (−Γ̇2(s), Γ̇1(s)) is the unit normal vector to Γ at the point s.
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The potential ‘ditch’
We will deal with Schrödinger operators with an attractive potential
supported in Ωa. To this aim, we consider

e a nonnegative V ∈ L∞(R) with suppV ⊂ [−a, a]
(where V ≥ 0 is assumed for convenience only)

and to define

Ṽ : Ωa → R+, Ṽ (x(s, u)) = V (u), and HΓ,V = −∆− Ṽ (x);

in view of assumption (e) the operator domain is D(−∆) = H2(R2)

It is also useful to introduce the channel-profile operator on L2(R),

hV = −∂2x − V (x)

with the domain H2(R) which has in accordance with (e) a nonempty
and finite discrete spectrum such that

ϵ0 := inf σdisc(hV ) = inf σ(hV ) ∈
(
− ∥V ∥∞, 0

)
,

where the ground-state eigenvalue ϵ0 is simple and the associated
eigenfunction ϕ0 ∈ H2(R) can be chosen strictly positive.
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Spectrum of HΓ,V

If the strip axis Γ is straight, the spectrum is easily found using
separation of variables; it is σ(HΓ0,V ) = σess(HΓ0,V ) = [ϵ0,∞).

On the other hand, if the ditch is curved but straight outside a compact,
or at least asymptotically straight in the sense of (b), one can use Weyl’s
criterion to prove the essential spectrum is preserved:

Proposition

Under assumptions (a)–(e) we have σess(HΓ,V ) = [ϵ0,∞)

As is the case of hard-wall waveguides or leaky wires, the question is
whether the curvature would give rise to bound states.

It is not clear at this moment whether there is a universal existence result
similar to those we were able to demonstrate in the indicated cases, but
we have at least some partial answers:

asymptotic results based on our previous knowledge

a quantitative criterion based on Birman-Schwinger principle
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Asymptotic results
We know from Lecture IV that −∆− αδ(x − Γ) can be approximated
in the norm-resolvent sense by Schrödinger operators with potentials
transversally scaled, Vε : Vε(u) =

1
εV
(
u
ε

)

. This allows us to prove:

Proposition

Consider a non-straight C 2-smooth curve Γ : R→ R2 such that
|Γ(s)− Γ(s ′)| > c |s − s ′| holds for some c ∈ (0, 1). If the support of its
signed curvature γ is noncompact, assume, in addition to (b), that
γ(s) = O(|s|−β) with some β > 5

4 as |s| → ∞. Then σdisc(HΓ,Vε) ̸= ∅
holds for all ε small enough.

Consider, on the other hand, a flat-bottom waveguide, VJ,0(u) = V0χJ(u),
where χJ refers to an interval J ⊂ [−a0, a0]. Using the high potential wall
limit and the existence result from Lecture II we can conclude:

Proposition

Let Γ be non-straight and assume that assumptions (a)–(d) are satisfied,
then σdisc(HΓ,VJ,0

) ̸= ∅ holds for all V0 large enough.
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A quantitative criterion
We have met Birman-Schwinger principle, standard and generalized, in
Lecture IV. Since the potential is supported in Ωa only, we may apply it,

use the curvilinear (Fermi, parallel) coordinates in Ωa,

‘straighten’ the strip and treat HΓ,V as a perturbation of HΓ0,V

Theorem

Let assumptions (a)–(e) be valid and set

Cκ
Γ,V (s, u; s

′, u′) =
1

2π
ϕ0(u)V (u)

[
(1 + uγ(s))1/2 K0(κ|x(s, u)− x(s′, u′)|) (1 + u′γ(s′))1/2

−K0(κ|x0(s, u)− x0(s
′, u′)|)

]
V (u′)ϕ0(u

′)

for all (s, u), (s ′, u′) ∈ Ωa
0, then we have σdisc(HΓ,V ) ̸= ∅ provided∫

R2

dsds ′
∫ a

−a

∫ a

−a
dudu′ Cκ0Γ,V (s, u; s

′, u′) > 0

holds for κ0 =
√
−ϵ0.

P.E.: Spectral properties of soft quantum waveguides, J. Phys. A: Math. Theor. 53 (2020), 355302.
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Remarks

BS principle can be also used to deal with soft waveguides in three
dimensions. Moreover, it is not the only way; a natural alternative is
to employ a variational method

. In this way the bound state existence
was proved for bookcover-shaped potential ditches

 

Source: the cited paper

S. Kondej, D. Krejčǐŕık, J. Kř́ıž: Soft quantum waveguides with a explicit cut locus, J. Phys. A: Math. Theor. 54
(2021), 30LT01

Using the variational approach, the discrete spectrum existence can be
shown in a much more general situation, cf. my talk at the conference
next week. Also soft layers of asymptotically conical shape have been
investigated and shown to have an infinite discrete spectrum.

S. Egger, J. Kerner, K. Pankrashkin: Discrete spectrum of Schrödinger operators with potentials concentrated
near conical surfaces, Lett. Math. Phys. 110 (2020), 945–968.

D. Krejčǐŕık, J. Kř́ıž: Bound states in soft quantum layers, Proc. RIMS. to appear; arXiv:2205.04919

Moreover, these results open a plethora of questions about soft
waveguide properties in different dimensions, different geometries,
topological properties of such potential ditch networks, etc.
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What to bring home from Lecture III

Schrödinger operators with singular interactions provided us with
alternative ways to describe guided dynamics. In this framework
again, geometry can determine spectral properties.

Leaky quantum structures reveal effects inaccessible within more
conventional models, in particular, those coming from tunneling.

In the strong coupling asymptotic regime leaky quantum structures
behave as having effectively a lower dimension. The boundaries of
the interaction support have in this regime the Dirichlet character.

Weakly bound states due to geometric perturbations behave like
regular Schrödinger operators, powerlike for curves, exponential
for surfaces.

Spectra of soft quantum waveguides depend on their geometry in
the ways similar to those of hard-wall and leaky structures.
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