Guided quantum dynamics

Pavel Exner

Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

With thanks to all my collaborators

A minicourse at the SOMPATY Summer School on Mathematics for the Micro/Nano-World

Samarkand, September 11-16, 2023

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.
- Resonances in quantum graphs, their dependence on the geometry and the situations when Weyl's law is violated.

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.
- Resonances in quantum graphs, their dependence on the geometry and the situations when Weyl's law is violated.
- Periodic graphs, the number and character of their spectral gaps.

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.
- Resonances in quantum graphs, their dependence on the geometry and the situations when Weyl's law is violated.
- Periodic graphs, the number and character of their spectral gaps. In some examples we considered matching conditions going beyond the δ-coupling, that is, with wave functions discontinuous at the vertices, however, those were mostly mathematical exercises.

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.
- Resonances in quantum graphs, their dependence on the geometry and the situations when Weyl's law is violated.
- Periodic graphs, the number and character of their spectral gaps. In some examples we considered matching conditions going beyond the δ-coupling, that is, with wave functions discontinuous at the vertices, however, those were mostly mathematical exercises.
One has to ask himself, however, whether there are situations where such coupling can fit the physics of the problem. Examples of this type will be our main topic now; before coming to them, let us add two comments:

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.
- Resonances in quantum graphs, their dependence on the geometry and the situations when Weyl's law is violated.
- Periodic graphs, the number and character of their spectral gaps. In some examples we considered matching conditions going beyond the δ-coupling, that is, with wave functions discontinuous at the vertices, however, those were mostly mathematical exercises.
One has to ask himself, however, whether there are situations where such coupling can fit the physics of the problem. Examples of this type will be our main topic now; before coming to them, let us add two comments:
- Most of the matter was reported at the SOMPATY seminar two years ago but as the Old ones used to say: repetitio est mater studiorum!

Quantum graphs again

Let us return to the first lecture topic and recall that we discussed:

- The concept of quantum graphs and conditions which ensure self-adjointness of the Hamiltonian.
- Resonances in quantum graphs, their dependence on the geometry and the situations when Weyl's law is violated.
- Periodic graphs, the number and character of their spectral gaps. In some examples we considered matching conditions going beyond the δ-coupling, that is, with wave functions discontinuous at the vertices, however, those were mostly mathematical exercises.
One has to ask himself, however, whether there are situations where such coupling can fit the physics of the problem. Examples of this type will be our main topic now; before coming to them, let us add two comments:
- Most of the matter was reported at the SOMPATY seminar two years ago but as the Old ones used to say: repetitio est mater studiorum!
- Concerning the terminology: at the beginning one spoke about QM on graphs. The term quantum graph was coined by Uzy Smilansky at the end of the 90 s , and he later expressed regrets about that.

Hall effect

To indicate the usefulness of such couplings, let us recall one the most interesting and important problems in solid-state physics, the Hall effect,

in which magnetic field induces a voltage perpendicular to the current.

Hall effect

To indicate the usefulness of such couplings, let us recall one the most interesting and important problems in solid-state physics, the Hall effect,

in which magnetic field induces a voltage perpendicular to the current.
In the quantum regime the corresponding conductivity is quantized with a great precision - this fact lead already to two Nobel Prizes.

Hall effect

To indicate the usefulness of such couplings, let us recall one the most interesting and important problems in solid-state physics, the Hall effect,

in which magnetic field induces a voltage perpendicular to the current.
In the quantum regime the corresponding conductivity is quantized with a great precision - this fact lead already to two Nobel Prizes.

However, in ferromagnetic material one can observe a similar behavior also in the absence of external magnetic field

Hall effect

To indicate the usefulness of such couplings, let us recall one the most interesting and important problems in solid-state physics, the Hall effect,

in which magnetic field induces a voltage perpendicular to the current.
In the quantum regime the corresponding conductivity is quantized with a great precision - this fact lead already to two Nobel Prizes.

However, in ferromagnetic material one can observe a similar behavior also in the absence of external magnetic field - being labeled anomalous.

Hall effect

To indicate the usefulness of such couplings, let us recall one the most interesting and important problems in solid-state physics, the Hall effect,

in which magnetic field induces a voltage perpendicular to the current.
In the quantum regime the corresponding conductivity is quantized with a great precision - this fact lead already to two Nobel Prizes.

However, in ferromagnetic material one can observe a similar behavior also in the absence of external magnetic field - being labeled anomalous.

In contrast to the 'usual' quantum Hall effect, its mechanism is not well understood; it is conjectured that it comes from internal magnetization in combination with the spin-orbit interaction.

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to the square lattice we will discuss later)
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.
P. Středa, K. Výborný: Anomalous Hall conductivity and quantum friction, Phys. Rev. B107 (2023), 014425

Source: the first cited paper

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to the square lattice we will discuss later)
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.
P. Středa, K. Výborný: Anomalous Hall conductivity and quantum friction, Phys. Rev. B107 (2023), 014425

Source: the first cited paper
Looking at the picture we recognize a flaw in the model

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to the square lattice we will discuss later)
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.
P. Středa, K. Výborný: Anomalous Hall conductivity and quantum friction, Phys. Rev. B107 (2023), 014425

Source: the first cited paper
Looking at the picture we recognize a flaw in the model: to mimick the rotational motion of atomic orbitals responsible for the magnetization, the authors had to impose 'by hand' the requirement that the electrons move only one way on the loops of the lattice

Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the material structure of the sample is described by lattice of δ-coupled rings (topologically equivalent to the square lattice we will discuss later)
P. Středa, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.
P. Středa, K. Výborný: Anomalous Hall conductivity and quantum friction, Phys. Rev. B107 (2023), 014425

Source: the first cited paper
Looking at the picture we recognize a flaw in the model: to mimick the rotational motion of atomic orbitals responsible for the magnetization, the authors had to impose 'by hand' the requirement that the electrons move only one way on the loops of the lattice. Naturally, such an assumption cannot be justified from the first principles!

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices. Consider an example: note that for a vertex coupling U the on-shell S-matrix at the momentum k is

$$
S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U},
$$

in particular, we have $U=S(1)$

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices. Consider an example: note that for a vertex coupling U the on-shell S-matrix at the momentum k is

$$
S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U},
$$

in particular, we have $U=S(1)$. If we thus require that the coupling leads to the 'maximum rotation' at $k=1$, it is natural to choose

$$
U=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Writing the coupling componentwise for vertex of degree N, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order

Breaking the time-reversal invariance

On the other hand, it is possible to break the time-reversal invariance, not at graph edges but in its vertices. Consider an example: note that for a vertex coupling U the on-shell S-matrix at the momentum k is

$$
S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U},
$$

in particular, we have $U=S(1)$. If we thus require that the coupling leads to the 'maximum rotation' at $k=1$, it is natural to choose

$$
U=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Writing the coupling componentwise for vertex of degree N, we have

$$
\left(\psi_{j+1}-\psi_{j}\right)+i\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0, \quad j \in \mathbb{Z}(\bmod N)
$$

which is non-trivial for $N \geq 3$ and obviously non-invariant w.r.t. the reverse in the edge numbering order, or equivalently, w.r.t. the complex conjugation representing the time reversal.

Star graphs: spectrum and scattering

Consider first a star graph with N semi-infinite edges and the above coupling. Obviously, we have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$

Star graphs: spectrum and scattering

Consider first a star graph with N semi-infinite edges and the above coupling. Obviously, we have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty

Star graphs: spectrum and scattering

Consider first a star graph with N semi-infinite edges and the above coupling. Obviously, we have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty, in particular, H has a single negative eigenvalue for $N=3,4$ which is equal to -3 and -1 , respectively.

Star graphs: spectrum and scattering

Consider first a star graph with N semi-infinite edges and the above coupling. Obviously, we have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty, in particular, H has a single negative eigenvalue for $N=3,4$ which is equal to -3 and -1 , respectively.
As for the scattering, we know that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$. It might seem that transport becomes trivial at small and high energies, since it looks like we have $\lim _{k \rightarrow 0} S(k)=-I$ and $\lim _{k \rightarrow \infty} S(k)=I$.

Star graphs: spectrum and scattering

Consider first a star graph with N semi-infinite edges and the above coupling. Obviously, we have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty, in particular, H has a single negative eigenvalue for $N=3,4$ which is equal to -3 and -1 , respectively.
As for the scattering, we know that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$. It might seem that transport becomes trivial at small and high energies, since it looks like we have $\lim _{k \rightarrow 0} S(k)=-I$ and $\lim _{k \rightarrow \infty} S(k)=I$.
However, caution is needed; the formal limits lead to a false result if +1 or -1 are eigenvalues of U

Star graphs: spectrum and scattering

Consider first a star graph with N semi-infinite edges and the above coupling. Obviously, we have $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$. It is also easy to check that H has eigenvalues $-\kappa^{2}$, where

$$
\kappa=\tan \frac{\pi m}{N}
$$

with m running through $1, \ldots,\left[\frac{N}{2}\right]$ for N odd and $1, \ldots,\left[\frac{N-1}{2}\right]$ for N even. Thus $\sigma_{\text {disc }}(H)$ is always nonempty, in particular, H has a single negative eigenvalue for $N=3,4$ which is equal to -3 and -1 , respectively.
As for the scattering, we know that $S(k)=\frac{k-1+(k+1) U}{k+1+(k-1) U}$. It might seem that transport becomes trivial at small and high energies, since it looks like we have $\lim _{k \rightarrow 0} S(k)=-I$ and $\lim _{k \rightarrow \infty} S(k)=I$.
However, caution is needed; the formal limits lead to a false result if +1 or -1 are eigenvalues of U. A counterexample is the (scale invariant) Kirchhoff coupling where U has only ± 1 as its eigenvalues; the on-shell S-matrix is then independent of k and it is not a multiple of the identity.

The vertex parity enters the game

Denoting for simplicity $\eta:=\frac{1-k}{1+k}$, a straightforward computation gives

$$
S_{i j}(k)=\frac{1-\eta^{2}}{1-\eta^{N}}\left\{-\eta \frac{1-\eta^{N-2}}{1-\eta^{2}} \delta_{i j}+\left(1-\delta_{i j}\right) \eta^{(j-i-1)(\bmod N)}\right\}
$$

The vertex parity enters the game

Denoting for simplicity $\eta:=\frac{1-k}{1+k}$, a straightforward computation gives

$$
S_{i j}(k)=\frac{1-\eta^{2}}{1-\eta^{N}}\left\{-\eta \frac{1-\eta^{N-2}}{1-\eta^{2}} \delta_{i j}+\left(1-\delta_{i j}\right) \eta^{(j-i-1)(\bmod N)}\right\}
$$

in particular, for $N=3,4$, respectively, we get

$$
\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right) \quad \text { and } \quad \frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

The vertex parity enters the game

Denoting for simplicity $\eta:=\frac{1-k}{1+k}$, a straightforward computation gives

$$
S_{i j}(k)=\frac{1-\eta^{2}}{1-\eta^{N}}\left\{-\eta \frac{1-\eta^{N-2}}{1-\eta^{2}} \delta_{i j}+\left(1-\delta_{i j}\right) \eta^{(j-i-1)(\bmod N)}\right\}
$$

in particular, for $N=3,4$, respectively, we get

$$
\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right) \text { and } \frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

We see that $\lim _{k \rightarrow \infty} S(k)=I$ holds for $N=3$ and more generally for all odd N, while for the even ones the limit is not a multiple of identity

The vertex parity enters the game

Denoting for simplicity $\eta:=\frac{1-k}{1+k}$, a straightforward computation gives

$$
S_{i j}(k)=\frac{1-\eta^{2}}{1-\eta^{N}}\left\{-\eta \frac{1-\eta^{N-2}}{1-\eta^{2}} \delta_{i j}+\left(1-\delta_{i j}\right) \eta^{(j-i-1)(\bmod N)}\right\}
$$

in particular, for $N=3,4$, respectively, we get

$$
\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right) \text { and } \frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

We see that $\lim _{k \rightarrow \infty} S(k)=I$ holds for $N=3$ and more generally for all odd N, while for the even ones the limit is not a multiple of identity. This is is related to the fact that in the latter case U has both ± 1 as its eigenvalues, while for N odd -1 is missing.

The vertex parity enters the game

Denoting for simplicity $\eta:=\frac{1-k}{1+k}$, a straightforward computation gives

$$
S_{i j}(k)=\frac{1-\eta^{2}}{1-\eta^{N}}\left\{-\eta \frac{1-\eta^{N-2}}{1-\eta^{2}} \delta_{i j}+\left(1-\delta_{i j}\right) \eta^{(j-i-1)(\bmod N)}\right\}
$$

in particular, for $N=3,4$, respectively, we get

$$
\frac{1+\eta}{1+\eta+\eta^{2}}\left(\begin{array}{ccc}
-\frac{\eta}{1+\eta} & 1 & \eta \\
\eta & -\frac{\eta}{1+\eta} & 1 \\
1 & \eta & -\frac{\eta}{1+\eta}
\end{array}\right) \text { and } \frac{1}{1+\eta^{2}}\left(\begin{array}{cccc}
-\eta & 1 & \eta & \eta^{2} \\
\eta^{2} & -\eta & 1 & \eta \\
\eta & \eta^{2} & -\eta & 1 \\
1 & \eta & \eta^{2} & -\eta
\end{array}\right)
$$

We see that $\lim _{k \rightarrow \infty} S(k)=I$ holds for $N=3$ and more generally for all odd N, while for the even ones the limit is not a multiple of identity. This is is related to the fact that in the latter case U has both ± 1 as its eigenvalues, while for N odd -1 is missing.

Let us look how this fact influences spectra of periodic quantum graphs.

Comparison of two lattices

Comparison of two lattices

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

and respectively

$$
16 i \mathrm{e}^{-i\left(\theta_{1}+\theta_{2}\right)} k^{2} \sin k \ell\left(3+6 k^{2}-k^{4}+4 d_{\theta}\left(k^{2}-1\right)+\left(k^{2}+3\right)^{2} \cos 2 k \ell\right)=0
$$

where $d_{\theta}:=\cos \theta_{1}+\cos \left(\theta_{1}-\theta_{2}\right)+\cos \theta_{2}$ and $\frac{1}{\ell}\left(\theta_{1}, \theta_{2}\right) \in\left[-\frac{\pi}{\ell}, \frac{\pi}{\ell}\right]^{2}$ is the quasimomentum

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

and respectively

$$
16 i \mathrm{e}^{-i\left(\theta_{1}+\theta_{2}\right)} k^{2} \sin k \ell\left(3+6 k^{2}-k^{4}+4 d_{\theta}\left(k^{2}-1\right)+\left(k^{2}+3\right)^{2} \cos 2 k \ell\right)=0
$$

where $d_{\theta}:=\cos \theta_{1}+\cos \left(\theta_{1}-\theta_{2}\right)+\cos \theta_{2}$ and $\frac{1}{\ell}\left(\theta_{1}, \theta_{2}\right) \in\left[-\frac{\pi}{\ell}, \frac{\pi}{\ell}\right]^{2}$ is the quasimomentum. They are tedious to solve except the flat band cases, $\sin k \ell=0$

Comparison of two lattices

Spectral condition for the two cases are easy to derive,

$$
16 i \mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)} k \sin k \ell\left[\left(k^{2}-1\right)\left(\cos \theta_{1}+\cos \theta_{2}\right)+2\left(k^{2}+1\right) \cos k \ell\right]=0
$$

and respectively

$$
16 i \mathrm{e}^{-i\left(\theta_{1}+\theta_{2}\right)} k^{2} \sin k \ell\left(3+6 k^{2}-k^{4}+4 d_{\theta}\left(k^{2}-1\right)+\left(k^{2}+3\right)^{2} \cos 2 k \ell\right)=0
$$

where $d_{\theta}:=\cos \theta_{1}+\cos \left(\theta_{1}-\theta_{2}\right)+\cos \theta_{2}$ and $\frac{1}{\ell}\left(\theta_{1}, \theta_{2}\right) \in\left[-\frac{\pi}{\ell}, \frac{\pi}{\ell}\right]^{2}$ is the quasimomentum. They are tedious to solve except the flat band cases, $\sin k \ell=0$, however, we can present the band solution in a graphical form

局 P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283-287.

A picture is worth of thousand words

For the two lattices, respectively, we get (with $\ell=\frac{3}{2}$, dashed $\ell=\frac{1}{4}$)

A picture is worth of thousand words

For the two lattices, respectively, we get (with $\ell=\frac{3}{2}$, dashed $\ell=\frac{1}{4}$)

and

Comparison summary

Some features are common:

- the number of open gaps is always infinite

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one
- for some values of ℓ a band may degenerate

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one
- for some values of ℓ a band may degenerate
- the negative spectrum is always nonempty, the gaps become exponentially narrow around star graph eigenvalues as $\ell \rightarrow \infty$

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one
- for some values of ℓ a band may degenerate
- the negative spectrum is always nonempty, the gaps become exponentially narrow around star graph eigenvalues as $\ell \rightarrow \infty$
But the high energy behavior of these lattices is substantially different:
- the spectrum is dominated by bands for square lattices

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one
- for some values of ℓ a band may degenerate
- the negative spectrum is always nonempty, the gaps become exponentially narrow around star graph eigenvalues as $\ell \rightarrow \infty$

But the high energy behavior of these lattices is substantially different:

- the spectrum is dominated by bands for square lattices
- it is dominated by gaps for hexagonal lattices

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one
- for some values of ℓ a band may degenerate
- the negative spectrum is always nonempty, the gaps become exponentially narrow around star graph eigenvalues as $\ell \rightarrow \infty$
But the high energy behavior of these lattices is substantially different:
- the spectrum is dominated by bands for square lattices
- it is dominated by gaps for hexagonal lattices

Naturally, this is not the only way to break the time symmetry. A simple modification is to change the inherent length scale replacing the above matching condition by $\left(\psi_{j+1}-\psi_{j}\right)+i \ell\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0$ for some $\ell>0$. This does not matter for stars, of course, but it already does for lattices.

Comparison summary

Some features are common:

- the number of open gaps is always infinite
- the gaps are centered around the flat bands except the lowest one
- for some values of ℓ a band may degenerate
- the negative spectrum is always nonempty, the gaps become exponentially narrow around star graph eigenvalues as $\ell \rightarrow \infty$
But the high energy behavior of these lattices is substantially different:
- the spectrum is dominated by bands for square lattices
- it is dominated by gaps for hexagonal lattices

Naturally, this is not the only way to break the time symmetry. A simple modification is to change the inherent length scale replacing the above matching condition by $\left(\psi_{j+1}-\psi_{j}\right)+i \ell\left(\psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0$ for some $\ell>0$. This does not matter for stars, of course, but it already does for lattices.

Let us mention one more involved choice of the vertex coupling.

An interpolation

One can interpolate between the δ-coupling and the present one taking e.g., for U the circulant matrix with the eigenvalues

$$
\lambda_{k}(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-i(1-t) \gamma} & \text { for } k=0 \\
-\mathrm{e}^{i \pi t\left(\frac{2 k}{n}-1\right)} & \text { for } k \geq 1
\end{array}\right.
$$

for all $t \in[0,1]$, where $\frac{n-i \alpha}{n+i \alpha}=\mathrm{e}^{-i \gamma}$

An interpolation

One can interpolate between the δ-coupling and the present one taking e.g., for U the circulant matrix with the eigenvalues

$$
\lambda_{k}(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-i(1-t) \gamma} & \text { for } k=0 \\
-\mathrm{e}^{i \pi t\left(\frac{2 k}{n}-1\right)} & \text { for } k \geq 1
\end{array}\right.
$$

for all $t \in[0,1]$, where $\frac{n-i \alpha}{n+i \alpha}=\mathrm{e}^{-i \gamma}$. Taking, for instance, $\alpha=0$ and $-4(\sqrt{2}+1)$, respectively, we have the following spectral patterns

An interpolation

One can interpolate between the δ-coupling and the present one taking e.g., for U the circulant matrix with the eigenvalues

$$
\lambda_{k}(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-i(1-t) \gamma} & \text { for } k=0 \\
-\mathrm{e}^{i \pi t\left(\frac{2 k}{n}-1\right)} & \text { for } k \geq 1
\end{array}\right.
$$

for all $t \in[0,1]$, where $\frac{n-i \alpha}{n+i \alpha}=\mathrm{e}^{-i \gamma}$. Taking, for instance, $\alpha=0$ and $-4(\sqrt{2}+1)$, respectively, we have the following spectral patterns

P.E., O. Turek, M. Tater: A family of quantum graph vertex couplings interpolating between different symmetries, J. Phys. A: Math. Theor. 51 (2018), 285301.

Another topic: band edges positions
 Looking for extrema of the dispersion functions, people usually seek them at the border of the respective Brillouin zone

Another topic: band edges positions

Looking for extrema of the dispersion functions, people usually seek them at the border of the respective Brillouin zone. Quantum graphs provide a warning: there are examples of a periodic graph in which (some) band edges correspond to internal points of the Brillouin zone

J.M. Harrison, P. Kuchment, A. Sobolev, B. Winn: On occurrence of spectral edges for periodic operators inside the Brillouin zone, J. Phys. A: Math. Theor. 40 (2007), 7597-7618.
P.E., P. Kuchment, B. Winn: On the location of spectral edges in \mathbb{Z}-periodic media, J. Phys. A: Math. Theor. 43 (2010), 474022.

Another topic: band edges positions

Looking for extrema of the dispersion functions, people usually seek them at the border of the respective Brillouin zone. Quantum graphs provide a warning: there are examples of a periodic graph in which (some) band edges correspond to internal points of the Brillouin zone

J.M. Harrison, P. Kuchment, A. Sobolev, B. Winn: On occurrence of spectral edges for periodic operators inside the Brillouin zone, J. Phys. A: Math. Theor. 40 (2007), 7597-7618.
P.E., P. Kuchment, B. Winn: On the location of spectral edges in \mathbb{Z}-periodic media, J. Phys. A: Math. Theor. 43 (2010), 474022.

The second one shows that this may be true even for graphs periodic in one direction

The number of connecting edges had to be $N \geq 2$

Another topic: band edges positions

Looking for extrema of the dispersion functions, people usually seek them at the border of the respective Brillouin zone. Quantum graphs provide a warning: there are examples of a periodic graph in which (some) band edges correspond to internal points of the Brillouin zone

```
J.M. Harrison, P. Kuchment, A. Sobolev, B. Winn: On occurrence of spectral edges for periodic operators inside the Brillouin zone, J. Phys. A: Math. Theor. 40 (2007), 7597-7618.
P.E., P. Kuchment, B. Winn: On the location of spectral edges in \(\mathbb{Z}\)-periodic media, J. Phys. A: Math. Theor. 43 (2010), 474022.
```

The second one shows that this may be true even for graphs periodic in one direction

The number of connecting edges had to be $N \geq 2$. An example:

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Its analysis shows:

- two-sided comb is transport-friendly, bands dominate

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Its analysis shows:

- two-sided comb is transport-friendly, bands dominate
- one-sided comb is transport-unfriendly, gaps dominate

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Its analysis shows:

- two-sided comb is transport-friendly, bands dominate
- one-sided comb is transport-unfriendly, gaps dominate
- sending the one side edge lengths to zero in a two-sided comb does not yield one-sided comb transport

Band edges, continued

In the same paper we showed that if $N=1$, the band edges correspond to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant w.r.t. time reversal. To show that this assumption was essential consider a comb-shaped graph with our non-invariant coupling at the vertices

Its analysis shows:

- two-sided comb is transport-friendly, bands dominate
- one-sided comb is transport-unfriendly, gaps dominate
- sending the one side edge lengths to zero in a two-sided comb does not yield one-sided comb transport
- and what about the dispersion curves?

Two-sided comb: dispersion curves

P.E., Daniel Vašata: Spectral properties of \mathbb{Z} periodic quantum chains without time reversal invariance, in preparation

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series: those behaving as $k=2 \pi n \pm \frac{2}{3} \pi$ for $n \in \mathbb{Z}$, and as $k=\pi n+\frac{1}{2} \pi$ with an $\mathcal{O}\left(k^{-2}\right)$ error

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges

and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series: those behaving as $k=2 \pi n \pm \frac{2}{3} \pi$ for $n \in \mathbb{Z}$, and as $k=\pi n+\frac{1}{2} \pi$ with an $\mathcal{O}\left(k^{-2}\right)$ error
- no such distinction exists for more common couplings such as δ

Discrete symmetry: Platonic solid graphs

The indicated properties of our vertex coupling can be manifested in many other ways. Consider, e.g., finite equilateral graphs consisting of Platonic solids edges
and assume the described coupling in the vertices. The corresponding spectra are discrete but their high-energy behavior differs:

- for tetrahedron, cube, icosahedron, and dodecahedron the square roots of ev's approach integer multiples of π with an $\mathcal{O}\left(k^{-1}\right)$ error
- octahedron also has such eigenvalues, but in addition it has two other series: those behaving as $k=2 \pi n \pm \frac{2}{3} \pi$ for $n \in \mathbb{Z}$, and as $k=\pi n+\frac{1}{2} \pi$ with an $\mathcal{O}\left(k^{-2}\right)$ error
- no such distinction exists for more common couplings such as δ
P.E., J. Lipovský: Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), 122101

Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction

Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction. Consider again a loop chain, first tightly connected

The spectrum of the corresponding Hamiltonian looks as follows:

Theorem

The spectrum of H_{0} consists of the absolutely continuous part which coincides with the interval $[0, \infty)$, and a family of infinitely degenerate eigenvalues, the isolated one equal to -1 , and the embedded ones equal to the positive integers.

[^0]
A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.
- The negative spectrum is contained in $(-\infty,-1)$ consisting of a single band if $\ell=\pi$, otherwise there is a pair of bands and $-3 \notin \sigma\left(H_{\ell}\right)$.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.
- The negative spectrum is contained in $(-\infty,-1)$ consisting of a single band if $\ell=\pi$, otherwise there is a pair of bands and $-3 \notin \sigma\left(H_{\ell}\right)$.
- The positive spectrum has infinitely many gaps.

A loosely connected chain

Replace the direct coupling of adjacent rings by connecting segments of length $\ell>0$, still with the same vertex coupling.

Theorem

The spectrum of H_{ℓ} has for any fixed $\ell>0$ the following properties:

- Any non-negative integer is an eigenvalue of infinite multiplicity.
- Away of the non-negative integers the spectrum is absolutely continuous having a band-and-gap structure.
- The negative spectrum is contained in $(-\infty,-1)$ consisting of a single band if $\ell=\pi$, otherwise there is a pair of bands and $-3 \notin \sigma\left(H_{\ell}\right)$.
- The positive spectrum has infinitely many gaps.
- $P_{\sigma}\left(H_{\ell}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{\ell}\right) \cap[0, K]\right|=0$ holds for any $\ell>0$.

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum, which was introduced in
\Rightarrow R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum, which was introduced in
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum, which was introduced in
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero. From the general result derived in
G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges, Adv. Math. 352 (2019), 632-669.
we know that $\sigma\left(H_{\ell}\right) \rightarrow \sigma\left(H_{0}\right)$ in the set sense as $\ell \rightarrow 0+$.

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum, which was introduced in
R. R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero. From the general result derived in
G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges, Adv. Math. 352 (2019), 632-669.
we know that $\sigma\left(H_{\ell}\right) \rightarrow \sigma\left(H_{0}\right)$ in the set sense as $\ell \rightarrow 0+$.
We have, however, obviously $P_{\sigma}\left(H_{0}\right)=1$, hence our example shows that the said convergence may be rather nonuniform!

The limit $\ell \rightarrow 0+$

The quantity $P_{\sigma}\left(H_{\ell}\right)$ in the last claim of the theorem is the probability of being in the spectrum, which was introduced in
R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what happens if the the connecting links lengths shrink to zero. From the general result derived in
(G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges,
we know that $\sigma\left(H_{\ell}\right) \rightarrow \sigma\left(H_{0}\right)$ in the set sense as $\ell \rightarrow 0+$.
We have, however, obviously $P_{\sigma}\left(H_{0}\right)=1$, hence our example shows that the said convergence may be rather nonuniform!

Note also that if we violate the mirror symmetry of the chain, we have instead $P_{\sigma}\left(H_{0}\right)=\frac{1}{2}$ independently of where exactly we place the vertex (irrationality not needed due the very simple form of spectral condition).

[^1]
One more example: transport properties

Consider strips cut of the following two types of lattices:

In both cases we impose the 'rotating' coupling at the vertices

One more example: transport properties

Consider strips cut of the following two types of lattices:

In both cases we impose the 'rotating' coupling at the vertices. By Floquet decomposition we are able reduce the task to investigation of a 'one cell layer'. We use the Ansatz $a e^{i k x}+b e^{-i k x}$ for the wave functions e, f_{j}, g_{j}, h_{j} with the appropriate coefficients at the graphs edges

One more example: transport properties

Consider strips cut of the following two types of lattices:

In both cases we impose the 'rotating' coupling at the vertices. By Floquet decomposition we are able reduce the task to investigation of a 'one cell layer'. We use the Ansatz $a e^{i k x}+b e^{-i k x}$ for the wave functions e, f_{j}, g_{j}, h_{j} with the appropriate coefficients at the graphs edges

This time we ask in which part of the 'guide' are the generalized eigenfunction dominantly supported

Transport properties, continued

Theorem

- In the rectangular-lattice strip, for a fixed $K \in\left(0, \frac{1}{2} \pi\right)$, consider $k>0$ obeying $k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right)$. With the natural normalization of the generalized eigenfunction corresponding to energy k^{2}, its components at the leftmost and rightmost vertical edges are of order $\mathcal{O}\left(k^{-1}\right)$ as $k \rightarrow \infty$.

Transport properties, continued

Theorem

- In the rectangular-lattice strip, for a fixed $K \in\left(0, \frac{1}{2} \pi\right)$, consider $k>0$ obeying $k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right)$. With the natural normalization of the generalized eigenfunction corresponding to energy k^{2}, its components at the leftmost and rightmost vertical edges are of order $\mathcal{O}\left(k^{-1}\right)$ as $k \rightarrow \infty$.
- In the 'brick-lattice' strip, consider momenta $k>0$ such that

$$
K \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{1}}, \frac{n \pi+K}{\ell_{1}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{3}}, \frac{n \pi+K}{\ell_{3}}\right) .
$$

Adopting the same normalization as above and denoting by $q_{j}^{(m)}$ with $m=1, \ldots, 8$, the coefficients of wave function components for the edges directed down and right from vertices of the jth vertical line, we have $q_{j}^{(m)}=\mathcal{O}\left(k^{1-j}\right)$ as $k \rightarrow \infty$.

[^2]
Transport properties, continued

Theorem

- In the rectangular-lattice strip, for a fixed $K \in\left(0, \frac{1}{2} \pi\right)$, consider $k>0$ obeying $k \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right)$. With the natural normalization of the generalized eigenfunction corresponding to energy k^{2}, its components at the leftmost and rightmost vertical edges are of order $\mathcal{O}\left(k^{-1}\right)$ as $k \rightarrow \infty$.
- In the 'brick-lattice' strip, consider momenta $k>0$ such that

$$
K \notin \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{1}}, \frac{n \pi+K}{\ell_{1}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{2}}, \frac{n \pi+K}{\ell_{2}}\right) \cup \bigcup_{n \in \mathbb{N}_{0}}\left(\frac{n \pi-K}{\ell_{3}}, \frac{n \pi+K}{\ell_{3}}\right) .
$$

Adopting the same normalization as above and denoting by $q_{j}^{(m)}$ with $m=1, \ldots, 8$, the coefficients of wave function components for the edges directed down and right from vertices of the jth vertical line, we have $q_{j}^{(m)}=\mathcal{O}\left(k^{1-j}\right)$ as $k \rightarrow \infty$.

[^3]Remark: Note that the 'brick-lattice' strip is not a topological insulator!

$\mathcal{P} \mathcal{T}$-symmetry

Having two research areas, each based of a strong concept, it is natur to look for connecting links. This applies, in particular, to quantum graphs and $\mathcal{P T}$-symmetry, also intensely studied in the last three decades.

C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having $\mathcal{P} \mathcal{T}$-symmetry, Phys. Rev. Lett. 80 (1988), 5243-5246.
C.M. Bender: $\mathcal{P} \mathcal{T}$-symmetric quantum theory, J. Phys.: Conf. Ser. 631 (2015), 012002.

$\mathcal{P} \mathcal{T}$-symmetry

Having two research areas, each based of a strong concept, it is natura, to look for connecting links. This applies, in particular, to quantum graphs and $\mathcal{P T}$-symmetry, also intensely studied in the last three decades.
C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having $\mathcal{P} \mathcal{T}$-symmetry, Phys. Rev. Lett. 80 (1988), 5243-5246.
C.M. Bender: $\mathcal{P} \mathcal{T}$-symmetric quantum theory, J. Phys.: Conf. Ser. 631 (2015), 012002.

It started from the observation that Schrödinger operators with complex potentials can have a real spectrum, and while the importance of this fact for QM remains a matter of dispute for those who are not $\mathcal{P T}$-proselytes, the idea found a number of applications in various areas.

$\mathcal{P} \mathcal{T}$-symmetry

Having two research areas, each based of a strong concept, it is natura to look for connecting links. This applies, in particular, to quantum graphs and $\mathcal{P T}$-symmetry, also intensely studied in the last three decades.

C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having $\mathcal{P} \mathcal{T}$-symmetry, Phys. Rev. Lett. 80 (1988), 5243-5246.
C.M. Bender: $\mathcal{P} \mathcal{T}$-symmetric quantum theory, J. Phys.: Conf. Ser. 631 (2015), 012002.

It started from the observation that Schrödinger operators with complex potentials can have a real spectrum, and while the importance of this fact for QM remains a matter of dispute for those who are not $\mathcal{P T}$-proselytes, the idea found a number of applications in various areas.
The focus is, of course, on nontrivial situations when neither parity nor the time-reversal invariance were preserved but their composition was. The known examples of $\mathcal{P} \mathcal{T}$-symmetry in quantum graphs go beyond the class of self-adjoint Hamiltonians.

[^4]
Vertex coupling symmetries

In our example we worked with a coupling which was obviously timereversal asymmetric. Let us now adopt a more general point of view.

Vertex coupling symmetries

In our example we worked with a coupling which was obviously timereversal asymmetric. Let us now adopt a more general point of view. As usual in QM, a symmetry is described by an operator $\mathcal{H} \rightarrow \mathcal{H}$ leaving the Hamiltonian is invariant. In our case the nontrivial part concerns the matching condition: a particular symmetry is associated with an invertible map in the space of the boundary values, $\Theta: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, such that we have $(U-I) \Theta \Psi(0)+i(U+I) \Theta \Psi^{\prime}(0)=0$ for all admissible Ψ, or equivalently

$$
\Theta^{-1} U \Theta=U
$$

Vertex coupling symmetries

In our example we worked with a coupling which was obviously timereversal asymmetric. Let us now adopt a more general point of view. As usual in QM, a symmetry is described by an operator $\mathcal{H} \rightarrow \mathcal{H}$ leaving the Hamiltonian is invariant. In our case the nontrivial part concerns the matching condition: a particular symmetry is associated with an invertible map in the space of the boundary values, $\Theta: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, such that we have $(U-I) \Theta \Psi(0)+i(U+I) \Theta \Psi^{\prime}(0)=0$ for all admissible Ψ, or equivalently

$$
\Theta^{-1} U \Theta=U
$$

One asks which operators are associated with the parity and time reversal transformations

Vertex coupling symmetries

In our example we worked with a coupling which was obviously timereversal asymmetric. Let us now adopt a more general point of view. As usual in QM, a symmetry is described by an operator $\mathcal{H} \rightarrow \mathcal{H}$ leaving the Hamiltonian is invariant. In our case the nontrivial part concerns the matching condition: a particular symmetry is associated with an invertible map in the space of the boundary values, $\Theta: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, such that we have $(U-I) \Theta \Psi(0)+i(U+I) \Theta \Psi^{\prime}(0)=0$ for all admissible Ψ, or equivalently

$$
\Theta^{-1} U \Theta=U
$$

One asks which operators are associated with the parity and time reversal transformations. The latter is simpler. Operator $\Theta_{\mathcal{T}}$ is antilinear and idempotent, in the absence of internal degrees of freedom it is just the complex conjugation. Using the unitarity, $U^{T} \bar{U}=\bar{U} U^{T}=I$ we see that $\bar{\psi}$ satisfies the matching condition with the transposed matrix, that is,

$$
\Theta_{\mathcal{T}}^{-1} U \Theta_{\mathcal{T}}=\Theta_{\mathcal{T}} U \Theta_{\mathcal{T}}=U^{T}
$$

and consequently, the H_{U} is \mathcal{T}-invariant if and only if $U=U^{T}$.

How to describe mirror transformations?

This also immediately implies that a (self-adjoint) quantum graph is $\mathcal{P T}$-symmetric if and only if the mirror transformation acts analogously,

$$
\Theta_{\mathcal{P}}^{-1} U \Theta_{\mathcal{P}}=\Theta_{\mathcal{P}} U \Theta_{\mathcal{P}}=U^{T} .
$$

How to describe mirror transformations?

This also immediately implies that a (self-adjoint) quantum graph is $\mathcal{P T}$-symmetric if and only if the mirror transformation acts analogously,

$$
\Theta_{\mathcal{P}}^{-1} U \Theta_{\mathcal{P}}=\Theta_{\mathcal{P}} U \Theta_{\mathcal{P}}=U^{T} .
$$

Note that the QG concept per se does not need an ambient space, but investigation of spatial reflections forces us to think of embedding in the Euclidean space. For simplicity we regard our star graph as planar, but the conclusion certainly extends to more general situations.

How to describe mirror transformations?

This also immediately implies that a (self-adjoint) quantum graph is $\mathcal{P T}$-symmetric if and only if the mirror transformation acts analogously,

$$
\Theta_{\mathcal{P}}^{-1} U \Theta_{\mathcal{P}}=\Theta_{\mathcal{P}} U \Theta_{\mathcal{P}}=U^{T} .
$$

Note that the QG concept per se does not need an ambient space, but investigation of spatial reflections forces us to think of embedding in the Euclidean space. For simplicity we regard our star graph as planar, but the conclusion certainly extends to more general situations.

Note that $\Theta_{\mathcal{P}}$ does not mean to reverse the edge orientation as they are all parametrized in the same outward direction. Neither is $\Theta_{\mathcal{P}}$ associated with reversing the edge numeration; that leads to a double transpose of U, both with respect to the diagonal and antidiagonal, however, such a change means just renaming the graph edges.

How to describe mirror transformations?

This also immediately implies that a (self-adjoint) quantum graph is $\mathcal{P T}$-symmetric if and only if the mirror transformation acts analogously,

$$
\Theta_{\mathcal{P}}^{-1} U \Theta_{\mathcal{P}}=\Theta_{\mathcal{P}} U \Theta_{\mathcal{P}}=U^{T} .
$$

Note that the QG concept per se does not need an ambient space, but investigation of spatial reflections forces us to think of embedding in the Euclidean space. For simplicity we regard our star graph as planar, but the conclusion certainly extends to more general situations.
Note that $\Theta_{\mathcal{P}}$ does not mean to reverse the edge orientation as they are all parametrized in the same outward direction. Neither is $\Theta_{\mathcal{P}}$ associated with reversing the edge numeration; that leads to a double transpose of U, both with respect to the diagonal and antidiagonal, however, such a change means just renaming the graph edges.
To see which operator can facilitate the similarity between U and U^{T}, we use the unitarity of the matrix: there is a unitary V such that $V U V^{*}$ is diagonal, and as such equal to its transpose. It follows that the matrix Θ satisfying $\Theta \cup \Theta=U^{T}$ is of the form $\Theta=V^{T} V$.

How to describe mirror transformations?

We know how V looks like: the j th column of V^{*} coincides with ϕ_{j}^{T}, where ϕ_{j} is the j th normalized eigenvector of U. Consequently, we have

$$
\Theta_{i j}=\left(\bar{\phi}_{i}, \phi_{j}\right), \quad i, j=1, \ldots, n ;
$$

the expression is nontrivial due to complex conjugation in the left entry.

How to describe mirror transformations?

We know how V looks like: the j th column of V^{*} coincides with ϕ_{j}^{T}, where ϕ_{j} is the j th normalized eigenvector of U. Consequently, we have

$$
\Theta_{i j}=\left(\bar{\phi}_{i}, \phi_{j}\right), \quad i, j=1, \ldots, n ;
$$

the expression is nontrivial due to complex conjugation in the left entry. Denoting by $\left\{\nu_{j}\right\}$ the 'natural' basis in the boundary value space, namely $\nu_{1}=(1,0, \ldots, 0)^{T}$, etc., we see that the above operator Θ maps ν_{j} to $\left(\left(\bar{\phi}_{1}, \phi_{j}\right), \ldots\left(\bar{\phi}_{n}, \phi_{j}\right)\right)^{T}$, so it general it is difficult to associate such a Θ with a mirror transformation.

How to describe mirror transformations?

We know how V looks like: the j th column of V^{*} coincides with ϕ_{j}^{T}, where ϕ_{j} is the j th normalized eigenvector of U. Consequently, we have

$$
\Theta_{i j}=\left(\bar{\phi}_{i}, \phi_{j}\right), \quad i, j=1, \ldots, n ;
$$

the expression is nontrivial due to complex conjugation in the left entry. Denoting by $\left\{\nu_{j}\right\}$ the 'natural' basis in the boundary value space, namely $\nu_{1}=(1,0, \ldots, 0)^{T}$, etc., we see that the above operator Θ maps ν_{j} to $\left(\left(\bar{\phi}_{1}, \phi_{j}\right), \ldots\left(\bar{\phi}_{n}, \phi_{j}\right)\right)^{T}$, so it general it is difficult to associate such a Θ with a mirror transformation.

The situation changes, however, when we restrict our attention to the subset of circulant matrices, i.e. those of the form

$$
U=\left(\begin{array}{ccccc}
c_{1} & c_{2} & \cdots & c_{n-1} & c_{n} \\
c_{n} & c_{1} & c_{2} & & c_{n-1} \\
\vdots & c_{n} & c_{1} & \ddots & \vdots \\
c_{3} & & \ddots & \ddots & c_{2} \\
c_{2} & c_{3} & \cdots & c_{n} & c_{1}
\end{array}\right)
$$

Circulant matrices

The unitarity requires that

$$
c_{j}=\frac{1}{n}\left(\lambda_{1}+\lambda_{2} \omega^{-j}+\lambda_{3} \omega^{-2 j}+\cdots+\lambda_{n} \omega^{-(n-1) j}\right), \quad j=1, \ldots, n,
$$

where $\lambda_{j}, j=1, \ldots, n$, are eigenvalues of U and $\omega:=\mathrm{e}^{2 \pi i / n}$. The corresponding eigenvectors are independent of the choice of the c_{j} 's,

$$
\phi_{j}=\frac{1}{\sqrt{n}}\left(1, \omega^{j}, \omega^{2 j}, \ldots, \omega^{(n-1) j}\right)^{T}, \quad j=1, \ldots, n .
$$

Circulant matrices

The unitarity requires that

$$
c_{j}=\frac{1}{n}\left(\lambda_{1}+\lambda_{2} \omega^{-j}+\lambda_{3} \omega^{-2 j}+\cdots+\lambda_{n} \omega^{-(n-1) j}\right), \quad j=1, \ldots, n,
$$

where $\lambda_{j}, j=1, \ldots, n$, are eigenvalues of U and $\omega:=\mathrm{e}^{2 \pi i / n}$. The corresponding eigenvectors are independent of the choice of the c_{j} 's,

$$
\phi_{j}=\frac{1}{\sqrt{n}}\left(1, \omega^{j}, \omega^{2 j}, \ldots, \omega^{(n-1) j}\right)^{T}, \quad j=1, \ldots, n .
$$

Furthermore, the eigenvalues can be written in terms of the matrix entries as $\lambda_{j}=\sum_{k=1}^{n} c_{k} \omega^{j(k-1)}$. The diagonalization is achieved in this case by the discrete Fourier transformation,

$$
V^{*}=\frac{1}{\sqrt{n}}\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \ldots & \omega^{(n-1)} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \ldots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \ldots & \omega^{(n-1)^{2}}
\end{array}\right)
$$

Mirror transformation for circulant matrices

$$
\Theta_{\mathcal{P}}=\left(\begin{array}{lllllll}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
\vdots & & & \ddots & & & \vdots \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

Mirror transformation for circulant matrices

$$
\Theta_{\mathcal{P}}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
\vdots & & & \ddots & & & \vdots \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

This has the needed properties, preserving the edge e_{1}, as well as e_{k+1} if $n=2 k$, and among the remaining ones it switches e_{j} with e_{n+2-j}, and moreover, the same will be true if we renumber the edges.

Mirror transformation for circulant matrices

$$
\Theta_{\mathcal{P}}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
\vdots & & & \ddots & & & \vdots \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

This has the needed properties, preserving the edge e_{1}, as well as e_{k+1} if $n=2 k$, and among the remaining ones it switches e_{j} with e_{n+2-j}, and moreover, the same will be true if we renumber the edges.

Thus we have found a class of vertex couplings exhibiting a $\mathcal{P T}$-symmetry. It depends on n real parameters, out of the number n^{2} which characterize an arbitrary self-adjoint coupling. Among them, a subset depending on $\left[\frac{n}{2}\right]+1$ parameters is separately symmetric with respect to the time inversion and mirror transformation, while in the $\left[\frac{n-1}{2}\right]$-parameter complement the $\mathcal{P T}$-symmetry is nontrivial.

Mirror transformation for circulant matrices

$$
\Theta_{\mathcal{P}}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
\vdots & & & \ddots & & & \vdots \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0
\end{array}\right)
$$

This has the needed properties, preserving the edge e_{1}, as well as e_{k+1} if $n=2 k$, and among the remaining ones it switches e_{j} with e_{n+2-j}, and moreover, the same will be true if we renumber the edges.

Thus we have found a class of vertex couplings exhibiting a $\mathcal{P T}$-symmetry. It depends on n real parameters, out of the number n^{2} which characterize an arbitrary self-adjoint coupling. Among them, a subset depending on $\left[\frac{n}{2}\right]+1$ parameters is separately symmetric with respect to the time inversion and mirror transformation, while in the $\left[\frac{n-1}{2}\right]$-parameter complement the $\mathcal{P T}$-symmetry is nontrivial.

The examples we discussed above belong, of course, to the latter subset.

A purely Robin coupling

To elucidate further the role played by the absence of the Dirichlet component in the vertex coupling, consider another interpolation: the coupling with

$$
U=\epsilon R, \quad \epsilon=\mathrm{e}^{i \mu}, \quad \mu \in\left(0, \frac{2 \pi}{n}\right)
$$

having the eigenvalue -1 at the endpoints of the parameter interval only.

A purely Robin coupling

To elucidate further the role played by the absence of the Dirichlet component in the vertex coupling, consider another interpolation: the coupling with

$$
U=\epsilon R, \quad \epsilon=\mathrm{e}^{i \mu}, \quad \mu \in\left(0, \frac{2 \pi}{n}\right)
$$

having the eigenvalue -1 at the endpoints of the parameter interval only.
In components the matching condition in this case reads

$$
\epsilon \psi_{j+1}-\psi_{j}+i \ell\left(\epsilon \psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0 \quad(\bmod n)
$$

and its $\mathcal{P} \mathcal{T}$-symmetry is obvious. Putting $\eta:=\frac{1-k \ell}{1+k \ell}$ we find

$$
S_{i j}(k)=\frac{1}{1-\epsilon^{n} \eta^{n}}\left(-\eta\left(1-\epsilon^{n} \eta^{n-2}\right) \delta_{i j}+\left(1-\delta_{i j}\right)\left(1-\eta^{2}\right) \epsilon(\epsilon \eta)^{(j-i-1)(\bmod n)}\right) .
$$

We have now $\lim _{k \rightarrow \infty} S(k)=I$ because of the factor $1-\eta^{2}$ which cancels out with the prefactor only if $\epsilon=1$.

A purely Robin coupling

To elucidate further the role played by the absence of the Dirichlet component in the vertex coupling, consider another interpolation: the coupling with

$$
U=\epsilon R, \quad \epsilon=\mathrm{e}^{i \mu}, \quad \mu \in\left(0, \frac{2 \pi}{n}\right)
$$

having the eigenvalue -1 at the endpoints of the parameter interval only.
In components the matching condition in this case reads

$$
\epsilon \psi_{j+1}-\psi_{j}+i \ell\left(\epsilon \psi_{j+1}^{\prime}+\psi_{j}^{\prime}\right)=0 \quad(\bmod n)
$$

and its $\mathcal{P} \mathcal{T}$-symmetry is obvious. Putting $\eta:=\frac{1-k \ell}{1+k \ell}$ we find

$$
S_{i j}(k)=\frac{1}{1-\epsilon^{n} \eta^{n}}\left(-\eta\left(1-\epsilon^{n} \eta^{n-2}\right) \delta_{i j}+\left(1-\delta_{i j}\right)\left(1-\eta^{2}\right) \epsilon(\epsilon \eta)^{(j-i-1)(\bmod n)}\right) .
$$

We have now $\lim _{k \rightarrow \infty} S(k)=I$ because of the factor $1-\eta^{2}$ which cancels out with the prefactor only if $\epsilon=1$.
To see how the spectrum changes, let us revisit the square lattice example.

[^5]
Square lattice example revisited

In the elementary cell of the lattice, we use again the Ansatz

$$
\begin{gathered}
\psi_{1}(x)=a_{1} \mathrm{e}^{i k x}+b_{1} \mathrm{e}^{-i k x}, \psi_{2}(x)=a_{2} \mathrm{e}^{i k x}+b_{2} \mathrm{e}^{-i k x} \\
\psi_{3}(x)=\omega_{1}\left(a_{1} \mathrm{e}^{i k(x+\ell)}+b_{1} \mathrm{e}^{-i k(x+\ell)}\right), \psi_{4}(x)=\omega_{2}\left(a_{2} \mathrm{e}^{i k(x+\ell)}+b_{2} \mathrm{e}^{-i k(x+\ell)}\right) .
\end{gathered}
$$

Using the mentioned matching condition and Floquet at the 'loose' ends, we get a linear system which is solvable if the determinant

$$
D \equiv D\left(\eta, \omega_{1}, \omega_{2}\right)=\left|\begin{array}{cccc}
-1 & -\eta & \epsilon \eta & \epsilon \\
\epsilon \omega_{1} \xi^{2} & \epsilon \omega_{1} \bar{\xi}^{2} \eta & -1 & -\eta \\
-\omega_{1} \xi^{2} \eta & -\omega_{1} \bar{\xi}^{2} & \epsilon \omega_{2} \xi^{2} & \epsilon \omega_{2} \bar{\xi}^{2} \eta \\
\epsilon \eta & \epsilon & -\omega_{2} \xi^{2} \eta & -\omega_{2} \bar{\xi}^{2}
\end{array}\right|,
$$

where $\omega_{j}=\mathrm{e}^{i \theta_{j}}, \xi=\mathrm{e}^{i k \ell}$ and $\epsilon=\mathrm{e}^{i \mu}$ with $\mu \in\left(0, \frac{1}{2} \pi\right)$ vanishes

Square lattice example revisited

In the elementary cell of the lattice, we use again the Ansatz

$$
\begin{gathered}
\psi_{1}(x)=a_{1} \mathrm{e}^{i k x}+b_{1} \mathrm{e}^{-i k x}, \psi_{2}(x)=a_{2} \mathrm{e}^{i k x}+b_{2} \mathrm{e}^{-i k x} \\
\psi_{3}(x)=\omega_{1}\left(a_{1} \mathrm{e}^{i k(x+\ell)}+b_{1} \mathrm{e}^{-i k(x+\ell)}\right), \psi_{4}(x)=\omega_{2}\left(a_{2} \mathrm{e}^{i k(x+\ell)}+b_{2} \mathrm{e}^{-i k(x+\ell)}\right) .
\end{gathered}
$$

Using the mentioned matching condition and Floquet at the 'loose' ends, we get a linear system which is solvable if the determinant

$$
D \equiv D\left(\eta, \omega_{1}, \omega_{2}\right)=\left|\begin{array}{cccc}
-1 & -\eta & \epsilon \eta & \epsilon \\
\epsilon \omega_{1} \xi^{2} & \epsilon \omega_{1} \bar{\xi}^{2} \eta & -1 & -\eta \\
-\omega_{1} \xi^{2} \eta & -\omega_{1} \bar{\xi}^{2} & \epsilon \omega_{2} \xi^{2} & \epsilon \omega_{2} \bar{\xi}^{2} \eta \\
\epsilon \eta & \epsilon & -\omega_{2} \xi^{2} \eta & -\omega_{2} \bar{\xi}^{2}
\end{array}\right|,
$$

where $\omega_{j}=\mathrm{e}^{i \theta_{j}}, \xi=\mathrm{e}^{i k \ell}$ and $\epsilon=\mathrm{e}^{i \mu}$ with $\mu \in\left(0, \frac{1}{2} \pi\right)$ vanishes. This gives
where

$$
8 i \epsilon^{2} \frac{\mathrm{e}^{i\left(\theta_{1}+\theta_{2}\right)}}{(k+1)^{4}} \sum_{j=0}^{4} c_{j} k^{j}=0
$$

$$
\begin{aligned}
& c_{0}=c_{4}=-\sin 2 \mu \sin ^{2} k \ell, \quad c_{2}=\sin 2 \mu(1+3 \cos 2 k \ell), \\
& c_{1}=2\left(2 \cos 2 \mu \cos k \ell-\cos \theta_{1}-\cos \theta_{2}\right) \sin k \ell, \\
& c_{3}=2\left(2 \cos 2 \mu \cos k \ell+\cos \theta_{1}+\cos \theta_{2}\right) \sin k \ell ;
\end{aligned}
$$

for the negative spectrum one has to set $k=i \kappa$ with $\kappa>0$.

Spectral properties

If $\mu=0$ the even c_{j} 's are zero and we get the solution discussed above, in particular, the positive spectrum is dominated by bands growing linearly.

Spectral properties

If $\mu=0$ the even c_{j} 's are zero and we get the solution discussed above, in particular, the positive spectrum is dominated by bands growing linearly. This changes once we have $\mu \neq 0$. The form of c_{2} does not allow to factorize a θ-independent term so there is no infinite series of flat bands

Spectral properties

If $\mu=0$ the even c_{j} 's are zero and we get the solution discussed above, in particular, the positive spectrum is dominated by bands growing linearly.

This changes once we have $\mu \neq 0$. The form of c_{2} does not allow to factorize a θ-independent term so there is no infinite series of flat bands. This does not mean that the point spectrum is void, though. Choosing $k=1$, the spectral condition reduces to $\sum_{j=0}^{4} c_{j}=0$ where the θ-dependent terms cancel and the sum vanishes provided

$$
\cot 2 \mu=\frac{-1-3 \cos 2 \ell+2 \sin ^{2} \ell}{4 \sin 2 \ell}=-\cot 2 \ell
$$

that is, we have a flat band at $\mu=\frac{\pi}{2}-\ell\left(\bmod \frac{\pi}{2}\right)$.

Spectral properties

If $\mu=0$ the even c_{j} 's are zero and we get the solution discussed above, in particular, the positive spectrum is dominated by bands growing linearly.

This changes once we have $\mu \neq 0$. The form of c_{2} does not allow to factorize a θ-independent term so there is no infinite series of flat bands. This does not mean that the point spectrum is void, though. Choosing $k=1$, the spectral condition reduces to $\sum_{j=0}^{4} c_{j}=0$ where the θ-dependent terms cancel and the sum vanishes provided

$$
\cot 2 \mu=\frac{-1-3 \cos 2 \ell+2 \sin ^{2} \ell}{4 \sin 2 \ell}=-\cot 2 \ell
$$

that is, we have a flat band at $\mu=\frac{\pi}{2}-\ell\left(\bmod \frac{\pi}{2}\right)$.
We lack now the nice graphical solution we had for $\mu=0$, but it is not difficult to determine the high-energy asymptotic behavior. Since $c_{4} \neq 0$ for $k \neq \frac{\pi n}{\ell}$, spectral bands may exist only in the vicinity of $\left(\frac{\pi n}{\ell}\right)^{2}$, while these point themselves do not belong to $\sigma\left(H_{U}\right)$.

Spectral properties, continued

Furthermore, the width of the nth band on the energy scale is for a fixed $\mu \in\left(0, \frac{\pi}{2}\right)$ asymptotically constant,

$$
\Delta_{n} \lesssim \frac{8}{\ell} \cot \mu
$$

We stress the fixed value of μ. The band width is not monotonous over the whole interval $\left[0, \frac{\pi}{2}\right]$; as we are approaching the right endpoint, it starts growing again, because $U=i R$ too has -1 as its eigenvalue.

Spectral properties, continued

Furthermore, the width of the nth band on the energy scale is for a fixed $\mu \in\left(0, \frac{\pi}{2}\right)$ asymptotically constant,

$$
\Delta_{n} \lesssim \frac{8}{\ell} \cot \mu
$$

We stress the fixed value of μ. The band width is not monotonous over the whole interval $\left[0, \frac{\pi}{2}\right]$; as we are approaching the right endpoint, it starts growing again, because $U=i R$ too has -1 as its eigenvalue.

This non-uniform character is also manifested by the fact that we have

$$
P_{\sigma}\left(H_{U}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{U}\right) \cap[0, K]\right|=0, \quad \mu \in\left(0, \frac{\pi}{2}\right)
$$

while for both the real-valued $U=R$ and the purely imaginary $U=i R$ the probability is equal to one.

Spectral properties, continued

Furthermore, the width of the nth band on the energy scale is for a fixed $\mu \in\left(0, \frac{\pi}{2}\right)$ asymptotically constant,

$$
\Delta_{n} \lesssim \frac{8}{\ell} \cot \mu
$$

We stress the fixed value of μ. The band width is not monotonous over the whole interval $\left[0, \frac{\pi}{2}\right]$; as we are approaching the right endpoint, it starts growing again, because $U=i R$ too has -1 as its eigenvalue.

This non-uniform character is also manifested by the fact that we have

$$
P_{\sigma}\left(H_{U}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{U}\right) \cap[0, K]\right|=0, \quad \mu \in\left(0, \frac{\pi}{2}\right)
$$

while for both the real-valued $U=R$ and the purely imaginary $U=i R$ the probability is equal to one.
The negative spectrum of H_{U} has two bands. In particular, for large ℓ they are narrow and to shrink to the star-graph eigenvalues referring to $\kappa=\tan \frac{\mu}{2}$ and $\tan \left(\frac{\mu}{2}+\frac{\pi}{4}\right)$ as $\kappa \rightarrow \infty$.

The spectrum as a function of μ

The spectrum of H_{U} for $\ell=\frac{3}{2}$ and $\ell=10$, respectively. The dot indicates the flat band at $k=1$.

High-energy spectrum

The spectrum for $\ell=10$ again: for a fixed $\mu \in\left(0, \frac{\pi}{2}\right)$ the positive spectral bands get narrower as the energy grows, while at the endpoints of the interval they dominate the spectrum.

Closing gaps

In distinction to the flat band at $(\mu, k)=\left(\frac{\pi}{2}-\ell, 1\right)$ we have true band crossings occurring either in the center of the Brillouin zone or its corners. Here we have dispersion surfaces (in the momentum variable) for $\ell=10$ at the points of closing gaps, left at $(\mu, k)=(1.55068665,10.07328547)$, right at $(\mu, k)=(1.55190524,10.38681556)$. The picture clearly shows the Dirac cones at the touching points.

Returning to the original vertex coupling

One can analyze other examples such as Kagome lattice with the coupling $U=R$ and its degenerate case, the triangular lattice

Returning to the original vertex coupling

One can analyze other examples such as Kagome lattice with the coupling $U=R$ and its degenerate case, the triangular lattice

The spectrum - here for $d=b+c=6$ as a function of c-has a complicated structure with 'true' and flat bands and band-edge crossings

M. Baradaran, P.E.: Kagome network with vertex
coupling of a preferred orientation, J. Math. Phys.
63 (2022), 083502

Returning to the original vertex coupling

One can analyze other examples such as Kagome lattice with the coupling $U=R$ and its degenerate case, the triangular lattice

The spectrum - here for $d=b+c=6$ as a function of c-has a complicated structure with 'true' and flat bands and band-edge crossings

M. Baradaran, P.E.: Kagome network with vertex coupling of a preferred orientation, J. Math. Phys. 63 (2022), 083502

The universality

Nevertheless Band-Berkolaiko universality

The universality

Nevertheless Band-Berkolaiko universality - originally stated for Kirchhoff coupling

The universality

Nevertheless Band-Berkolaiko universality - originally stated for Kirchhoff coupling - holds again: whenever the edges are incommensurate, we have

$$
P_{\sigma}\left(H_{U}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{U}\right) \cap[0, K]\right| \approx 0.639 .
$$

The universality

Nevertheless Band-Berkolaiko universality - originally stated for Kirchhoff coupling - holds again: whenever the edges are incommensurate, we have

$$
P_{\sigma}\left(H_{U}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{U}\right) \cap[0, K]\right| \approx 0.639
$$

To understand the reason, let us see how the spectral condition looks like,

$$
0 \leq \frac{5}{4}+\frac{\cos k d \cos \frac{k(2 c-d)}{2}+\cos \frac{3 k d}{2}}{\cos \frac{k(2 c-d)}{2}+\cos \frac{k d}{2}} \leq \frac{9}{4}
$$

hence in the ergodic situation we have just to calculate the area of the appropriate part of the torus, in contrast to commensurate edge situations:

The universality

Nevertheless Band-Berkolaiko universality - originally stated for Kirchhoff coupling - holds again: whenever the edges are incommensurate, we have

$$
P_{\sigma}\left(H_{U}\right):=\lim _{K \rightarrow \infty} \frac{1}{K}\left|\sigma\left(H_{U}\right) \cap[0, K]\right| \approx 0.639
$$

To understand the reason, let us see how the spectral condition looks like,

$$
0 \leq \frac{5}{4}+\frac{\cos k d \cos \frac{k(2 c-d)}{2}+\cos \frac{3 k d}{2}}{\cos \frac{k(2 c-d)}{2}+\cos \frac{k d}{2}} \leq \frac{9}{4}
$$

hence in the ergodic situation we have just to calculate the area of the appropriate part of the torus, in contrast to commensurate edge situations:

Spectral optimization

Let us now change the topic. A traditional spectral geometry question is about the shape which makes a given property optimal.

Spectral optimization

Let us now change the topic. A traditional spectral geometry question is about the shape which makes a given property optimal.

Quite often the optimal shape has a symmetry; the most classical example is the Faber-Krahn inequality proving a conjecture put forward by Lord Rayleigh

Spectral optimization

Let us now change the topic. A traditional spectral geometry question is about the shape which makes a given property optimal.

Quite often the optimal shape has a symmetry; the most classical example is the Faber-Krahn inequality proving a conjecture put forward by Lord Rayleigh: let $\lambda_{1}(\Omega)$ be the principal eigenvalues of the Dirichlet Laplacian $-\Delta_{\Omega}^{\mathrm{D}}$ for a region $\Omega \subset \mathbb{R}^{d}$. Assuming that $\operatorname{vol}(\Omega)$ is kept fixed, then $\lambda_{1}(\Omega)$ is sharply minimized by a ball.

G. Faber: Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige den Tiefsten Grundton gibt, Sitzungber. der math.-phys. Klasse der Bayerische Akad. der Wiss. zu München (1923), 169-172.
E. Krahn: Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises, Ann. Math. 94 (1925), 97-100.

Spectral optimization

Let us now change the topic. A traditional spectral geometry question is about the shape which makes a given property optimal.

Quite often the optimal shape has a symmetry; the most classical example is the Faber-Krahn inequality proving a conjecture put forward by Lord Rayleigh: let $\lambda_{1}(\Omega)$ be the principal eigenvalues of the Dirichlet Laplacian $-\Delta_{\Omega}^{\mathrm{D}}$ for a region $\Omega \subset \mathbb{R}^{d}$. Assuming that $\operatorname{vol}(\Omega)$ is kept fixed, then $\lambda_{1}(\Omega)$ is sharply minimized by a ball.
G. Faber: Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige den Tiefsten Grundton gibt, Sitzungber. der math.-phys. Klasse der Bayerische Akad. der Wiss. zu München (1923), 169-172.

青E. Krahn: Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises, Ann. Math. 94 (1925), 97-100.

To give one more example, let us mention the Payne-Pólya-Weinberger inequality: in the same situation the ratio of the first two eigenvalues, $\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)}$, is sharply maximized by a ball.
M.S. Ashbaugh, R.D. Benguria: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992), 601-628.

Non-simply connected regions

Not always does the intuition tells us the right answer

Non-simply connected regions

Not always does the intuition tells us the right answer. For instance, the topology may play role. Let us mention pictorially two examples in maximum symmetry may lead to maximum of the principal eigenvalue

Non-simply connected regions

Not always does the intuition tells us the right answer. For instance, the topology may play role. Let us mention pictorially two examples in maximum symmetry may lead to maximum of the principal eigenvalue If we seek extremum among strips of fixed length and width we have

whenever the strip is not a circular annulus.
P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature, in Proceedings of QMath7, Birkhäuser, Basel 1999; pp. 47-53.

Non-simply connected regions

Not always does the intuition tells us the right answer. For instance, the topology may play role. Let us mention pictorially two examples in maximum symmetry may lead to maximum of the principal eigenvalue If we seek extremum among strips of fixed length and width we have

whenever the strip is not a circular annulus.
P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature, in Proceedings of QMath7, Birkhäuser, Basel 1999; pp. 47-53.
Similarly, for a circular obstacle in circular cavity we have

whenever the obstacle is off center; the minimum is reached when it is touching the boundary.

[^6]
A leaky loop analogue

Let Γ be a loop in $\mathbb{R}^{d}, d \geq 2$, parametrized by its arc length, i.e. a piecewise differentiable function $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ for all but finitely many $s \in[0, L]$

A leaky loop analogue

Let Γ be a loop in $\mathbb{R}^{d}, d \geq 2$, parametrized by its arc length, i.e. a piecewise differentiable function $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ for all but finitely many $s \in[0, L]$. We have

Theorem

Let $d=2$. For any $\alpha>0$ and $L>0$ we have $\lambda_{1}(\alpha, \Gamma) \leq \lambda_{1}(\alpha, \mathcal{C})$, where \mathcal{C} is a circle of perimeter L, the inequality being sharp unless Γ is congruent with \mathcal{C}.

[^7]
A leaky loop analogue

Let Γ be a loop in $\mathbb{R}^{d}, d \geq 2$, parametrized by its arc length, i.e. a piecewise differentiable function $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ for all but finitely many $s \in[0, L]$. We have

Theorem

Let $d=2$. For any $\alpha>0$ and $L>0$ we have $\lambda_{1}(\alpha, \Gamma) \leq \lambda_{1}(\alpha, \mathcal{C})$, where \mathcal{C} is a circle of perimeter L, the inequality being sharp unless Γ is congruent with \mathcal{C}.

[^8]One more time, we employ the generalized Birman-Schwinger principle by which there is one-to-one correspondence between eigenvalues $-\kappa^{2}$ of $H_{\alpha, \Gamma}$ and solutions to the integral-operator equation

$$
\mathcal{R}_{\alpha, \Gamma}^{\kappa} \phi=\phi, \quad \text { where } \mathcal{R}_{\alpha, \Gamma}^{\kappa}\left(s, s^{\prime}\right):=\frac{\alpha}{2 \pi} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right)
$$

on $L^{2}([0, L])$, where K_{0} is the Macdonald function.

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Proposition

$C_{L}^{2}(u)$ is valid for any $u \in\left(0, \frac{1}{2} L\right]$, and the inequality is strict unless Γ is a planar circle; by convexity the same is true for all $p<2$.

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Proposition

$C_{L}^{2}(u)$ is valid for any $u \in\left(0, \frac{1}{2} L\right]$, and the inequality is strict unless Γ is a planar circle; by convexity the same is true for all $p<2$.

Using a variational argument together with the fact that $K_{0}(\cdot)$ appearing in the resolvent kernel is strictly monotonous and convex the optimization problem for $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is reduced to the inequality $C_{L}^{1}(u)$ being thus proved.

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Proposition

$C_{L}^{2}(u)$ is valid for any $u \in\left(0, \frac{1}{2} L\right]$, and the inequality is strict unless Γ is a planar circle; by convexity the same is true for all $p<2$.

Using a variational argument together with the fact that $K_{0}(\cdot)$ appearing in the resolvent kernel is strictly monotonous and convex the optimization problem for $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is reduced to the inequality $C_{L}^{1}(u)$ being thus proved.
Remark: The (reverse) inequalities hold also for $p \in[-2,0)$ showing, e.g., that a charged loop in the absence of gravity takes a circular form.

A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed at the arc distances $\frac{j L}{N}, j=0, \ldots, N_{1}$, in other words, the formal Hamiltonian

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, where the last term has to be properly defined

A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed at the arc distances $\frac{j L}{N}, j=0, \ldots, N_{1}$, in other words, the formal Hamiltonian

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, where the last term has to be properly defined We are interested in the shape of Γ which maximizes the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha, \Gamma}^{N}$ is non-empty; this requirement is nontrivial for $d=3$.

A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed at the arc distances $\frac{j L}{N}, j=0, \ldots, N_{1}$, in other words, the formal Hamiltonian

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, where the last term has to be properly defined We are interested in the shape of Γ which maximizes the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha, \Gamma}^{N}$ is non-empty; this requirement is nontrivial for $d=3$.

Introduce the generalized boundary values as the coefficients in the expansion of H_{Y}^{*} where H_{Y} is the Laplacian restricted to functions vanishing at the vicinity of the points of Y.

Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2, \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3 .
\end{aligned}
$$

Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2 \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3
\end{aligned}
$$

Local self-adjoint extension are then given by

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R} ;
$$

the absence of interaction corresponds to $\alpha=\infty$, we refer again to
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, 2nd edition, Amer. Math. Soc., Providence, R.I., 2005.

Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2 \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3
\end{aligned}
$$

Local self-adjoint extension are then given by

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

the absence of interaction corresponds to $\alpha=\infty$, we refer again to
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, 2nd edition, Amer. Math. Soc., Providence, R.I., 2005.

Theorem

The ground state of $H_{\alpha, \Gamma}^{N}$ is uniquely maximized by a N-regular polygon.

[^9]
Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2 \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3
\end{aligned}
$$

Local self-adjoint extension are then given by

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

the absence of interaction corresponds to $\alpha=\infty$, we refer again to
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, 2nd edition, Amer. Math. Soc., Providence, R.I., 2005.

Theorem

The ground state of $H_{\alpha, \Gamma}^{N}$ is uniquely maximized by a N-regular polygon.
P.E.: Necklaces with interacting beads: isoperimetric problems, in Proceedings of the "International Conference on Differential Equations and Mathematical Physics" (Birmingham 2006), AMS Contemporary Mathematics Series, vol. 412, Providence, R.I., 2006; pp. 141-149.

More results on spectral optimization will be given in the next lecture.

What to bring home from Lecture IV

- Some 'unusual' matching conditions, meaning those in which wave functions are discontinuous at the vertex, may be of physical interest.

What to bring home from Lecture IV

- Some 'unusual' matching conditions, meaning those in which wave functions are discontinuous at the vertex, may be of physical interest.
- Quantum graphs provide examples warning against risks of 'folklore' methods often used to investigate PDEs.

What to bring home from Lecture IV

- Some 'unusual' matching conditions, meaning those in which wave functions are discontinuous at the vertex, may be of physical interest.
- Quantum graphs provide examples warning against risks of 'folklore' methods often used to investigate PDEs.
- Small changes of the vertex coupling parameters can lead to rather dramatic effects in the spectral behavior of a given graph.

What to bring home from Lecture IV

- Some 'unusual' matching conditions, meaning those in which wave functions are discontinuous at the vertex, may be of physical interest.
- Quantum graphs provide examples warning against risks of 'folklore' methods often used to investigate PDEs.
- Small changes of the vertex coupling parameters can lead to rather dramatic effects in the spectral behavior of a given graph.
- Quantum graphs can exhibit a nontrivial $\mathcal{P T}$-symmetry even if the corresponding Hamiltonian is self-adjoint.

What to bring home from Lecture IV

- Some 'unusual' matching conditions, meaning those in which wave functions are discontinuous at the vertex, may be of physical interest.
- Quantum graphs provide examples warning against risks of 'folklore' methods often used to investigate PDEs.
- Small changes of the vertex coupling parameters can lead to rather dramatic effects in the spectral behavior of a given graph.
- Quantum graphs can exhibit a nontrivial $\mathcal{P T}$-symmetry even if the corresponding Hamiltonian is self-adjoint.
- In contrast to Faber-Krahn-type results, the ground-state energy of leaky loops and point-interaction 'necklaces' is maximized by configurations of the maximum symmetry

[^0]: 邫
 M. Baradaran, P.E., M. Tater: Ring chains with vertex coupling of a preferred orientation, Rev. Math. Phys. 33 (2021),
 2060005.

[^1]: 宣
 M. Baradaran, P.E., M. Tater: Spectrum of periodic chain graphs with time-reversal non-invariant vertex coupling, Ann. Phys. 443 (2022), 168992

[^2]: 曷
 P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

[^3]: 差
 P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

[^4]: A. Hussein, D. Krejčiřík, P. Siegl: Non-selfadjoint quantum graphs, Trans. Amer. Math. Soc. 367 (2015), 2921-2957.
 P. Kurasov, B. Majidzadeh Garjani: Quantum graphs: $\mathcal{P} \mathcal{T}$-symmetry and reflection symmetry of the spectrum, J. Math. Phys. 58 (2017), 023506.
 D.U. Matrasulov, K.K.Sabirov, J.R. Yusupov: $\mathcal{P} \mathcal{T}$-symmetric quantum graphs, J. Phys. A: Math. Theor. 52 (2019), 155302.

[^5]: P.E., M. Tater: Quantum graphs: self-adjoint, and yet exhibiting a nontrivial $\mathcal{P} \mathcal{T}$-symmetry, Phys. Lett. A416 (2021), 127669

[^6]: 目
 E.M. Harrell, P. Kröger, K. Kurata: On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal. 33 (2001), 240-259.

[^7]: \Rightarrow P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math.
 Phys. 75 (2006), 242-233; addendum 77 (2006), 219.

[^8]: - P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math. Phys. 75 (2006), 242-233; addendum 77 (2006), 219.

[^9]: 青
 P.E.: Necklaces with interacting beads: isoperimetric problems, in Proceedings of the "International Conference on Differential Equations and Mathematical Physics" (Birmingham 2006), AMS Contemporary Mathematics Series, vol. 412, Providence, R.I., 2006; pp. 141-149.

